
Optimizing Load Balance Using Parallel Migratable
Objects

Laxmikant V. Kalé, Eric Bohm

Parallel Programming Laboratory
University of Illinois Urbana-Champaign

2012/9/25

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 1 / 1

Optimization Do’s and Don’ts

Correcting load imbalance is an optimization
I Like all optimizations, it is a cure to a performance ailment

F Diagnose the ailment before applying treatment

I Use performance analysis tools to understand performance
F Ironically, we cover that material later...
F But your process should be to use them early

I A sampling of tools of interest:
F Compiler reports for inlining, instruction level parallelism, etc
F Profiling tools (gprof, xprof, manual timing)
F Hardware counters (PAPI, PCL, etc)
F Valgrind memory tool suite
F Parallel analysis tools: Projections, HPCToolkit, TAU, JumpShot, etc.

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 2 / 1

How to Diagnose Load Imbalance

Often hidden in statements such as:
I Very high synchronization overhead

F Most processors are waiting at a reduction

Count total amount of computation (ops/flops) per processor
I In each phase!
I Because the balance may change from phase to phase

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 3 / 1

Golden Rule of Load Balancing

Fallacy: objective of load balancing is to minimize variance in load across
processors

Example:
I 50,000 tasks of equal size, 500 processors:

F A: All processors get 99, except last 5 gets 100 + 99 = 199
F OR, B: All processors have 101, except last 5 get 1

Identical variance, but situation A is much worse!

Golden Rule: It is ok if a few processors idle, but avoid having processors
that are overloaded with work
Finish time = maxi(Time on processor i)

excepting data dependence and communication overhead issues

The speed of any group is the speed of slowest member of that group.

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 4 / 1

Automatic Dynamic Load Balancing

Measurement based load balancers
I Principle of persistence: In many CSE applications, computational

loads and communication patterns tend to persist, even in dynamic
computations

I Therefore, recent past is a good predictor of near future
I Charm++ provides a suite of load-balancers
I Periodic measurement and migration of objects

Seed balancers (for task-parallelism)
I Useful for divide-and-conquer and state-space-search applications
I Seeds for charm++ objects moved around until they take root

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 5 / 1

Using the Load Balancer

link a LB module
I -module <strategy>

I RefineLB, NeighborLB, GreedyCommLB, others
I EveryLB will include all load balancing strategies

compile time option (specify default balancer)
I -balancer RefineLB
I runtime option
I +balancer RefineLB

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 6 / 1

Code to Use Load Balancing

Insert if (myLBStep) AtSync() else ResumeFromSync(); call
at natural barrier

Implement ResumeFromSync() to resume execution

I Typical ResumeFromSync contribute to a reduction

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 7 / 1

Example: Stencil

while (!converged) {
atomic {

int x = thisIndex.x, y = thisIndex.y, z = thisIndex.z;
copyToBoundaries();
thisProxy(wrapX(x−1),y,z).updateGhosts(i, RIGHT, dimY, dimZ, right);
/∗ ...similar calls to send the 6 boundaries... ∗/
thisProxy(x,y,wrapZ(z+1)).updateGhosts(i, FRONT, dimX, dimY, front);
}
for (remoteCount = 0; remoteCount < 6; remoteCount++) {

when updateGhosts[i](int i, int d, int w, int h, double b[w∗h])
atomic { updateBoundary(d, w, h, b); }
}
atomic {

int c = computeKernel() < DELTA;
CkCallback cb(CkReductionTarget(Jacobi, checkConverged), thisProxy);
if (i%5 == 1) contribute(sizeof(int), \&c, CkReduction::logical and, cb);
}
if (i % lbPeriod == 0) { atomic { AtSync(); } when ResumeFromSync() {} }
if (++i % 5 == 0) {

when checkConverged(bool result) atomic {
if (result) { mainProxy.done(); converged = true; }
}
}
}

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 8 / 1

Chare Migration: motivations

Chares are initially placed according to a placement map
I The user can specify this map

While running, some processors might be overloaded
I Need to rebalance the load

Automatic checkpoint
I Migration to disk

Chares are made serializable for transport using the Pack UnPack
(PUP) framework

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 9 / 1

The PUP Process

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 10 / 1

PUP Usage Sequence

Migration out:
I ckAboutToMigrate
I Sizing
I Packing
I Destructor

Migration in:
I Migration constructor
I UnPacking
I ckJustMigrated

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 11 / 1

Writing a PUP routine

class MyChare : public
CBase MyChare {

int a; float b; char c;
float localArray[LOCAL SIZE];
int heapArraySize;
float∗ heapArray;
MyClass ∗pointer;

public:
MyChare();
MyChare(CkMigrateMessage ∗

msg) {};
˜MyChare() {

if (heapArray != NULL) {
delete [] heapArray;
heapArray = NULL;
}

};

void pup(PUP::er &p) {
CBase MyChare::pup(p);
p | a; p | b; p | c;
p(localArray, LOCAL SIZE);
p | heapArraySize;
if (p.isUnpacking()) {

heapArray = new float[
heapArraySize];

}
p(heapArray, heapArraySize);
int isNull = (pointer==NULL)

? 1 : 0;
p | isNull;
if (!isNull) {

if (p.isUnpacking()) pointer =
new MyClass();

p | ∗pointer;
}
}
}Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 12 / 1

PUP: Issues

If variables are added to an object, update the PUP routine

If the object allocates data on the heap, copy it recursively, not just
the pointer

Remember to allocate memory while unpacking

Sizing, Packing, and Unpacking must scan the same variables in the
same order

Test PUP routines with +balancer RotateLB

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 13 / 1

Performance

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 14 / 1

Grainsize and Load Balancing

How Much Balance Is Possible?

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 15 / 1

Grainsize For Extreme Scaling

Strong Scaling is limited by expressed parallelism
I Minimum iteration time limited lengthiest computation

F Largest grains set lower bound

1-away generalized to k-away provides fine granularity control

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 16 / 1

NAMD: 2-AwayX Example

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 17 / 1

Load Balancing Strategies

Classified by when it is done:
I Initially
I Dynamic: Periodically
I Dynamic: Continuously

Classified by whether decisions are taken with global information
I Fully centralized

F Quite good a choice when load balancing period is high

I Fully distributed
F Each processor knows only about a constant number of neighbors
F Extreme case: totally local decision (send work to a random destination

processor, with some probability).

I Use aggregated global information, and detailed neighborhood info.

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 18 / 1

Dynamic Load Balancing Scenarios

Examples representing typical classes of situations
I Particles distributed over simulation space

F Dynamic: because Particles move.

Highly non-uniform distribution (cosmology)
Relatively Uniform distribution

Structured grids, with dynamic refinements/coarsening

Unstructured grids with dynamic refinements/coarsening

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 19 / 1

Example Case: Particles

Orthogonal Recursive Bisection (ORB)

At each stage: divide Particles equally

Processor dont need to be a power of 2:
I Divide in proportion

F 2:3 with 5 processors

How to choose the dimension along which to cut?
I Choose the longest one

How to draw the line?
I All data on one processor? Sort along each dimension
I Otherwise: run a distributed histogramming algorithm to find the line,

recursively

Find the entire tree, and then do all data movement at once
I Or do it in two-three steps.
I But no reason to redistribute particles after drawing each line.

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 20 / 1

Dynamic Load Balancing using Objects

Object based decomposition (I.e. virtualized decomposition) helps

Allows RTS to remap them to balance load

But how does the RTS decide where to map objects?

Just move objects away from overloaded processors to underloaded
processors

How is load determined?

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 21 / 1

Measurement Based Load Balancing

Principle of Persistence
I Object communication patterns and computational loads tend to

persist over time
I In spite of dynamic behavior

F Abrupt but infrequent changes
F Slow and small changes

Runtime instrumentation
I Measures communication volume and computation time

Measurement based load balancers
I Use the instrumented data-base periodically to make new decisions
I Many alternative strategies can use the database

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 22 / 1

Periodic Load Balancing

Stop the computation?
Centralized strategies:

Charm RTS collects data (on one processor) about:
I Computational Load and Communication for each pair

If you are not using AMPI/Charm, you can do the same
instrumentation and data collection

Partition the graph of objects across processors
I Take communication into account

F Pt-to-pt, as well as multicast over a subset
F As you map an object, add to the load on both sending and receiving

processor

I Multicasts to multiple co-located objects are effectively the cost of a
single send

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 23 / 1

Typical Load Balancing Steps

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 24 / 1

Object Partitioning Strategies

You can use graph partitioners like METIS, K-R
I BUT: graphs are smaller, and optimization criteria are different

Greedy strategies:
I If communication costs are low: use a simple greedy strategy

F Sort objects by decreasing load
F Maintain processors in a heap (by assigned load)
F In each step:

assign the heaviest remaining object to the least loaded
processor

I With small-to-moderate communication cost:
F Same strategy, but add communication costs as you add an object to a

processor

I Always add a refinement step at the end:
F Swap work from heaviest loaded processor to “some other processor”
F Repeat a few times or until no improvement

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 25 / 1

Object Partitioning Strategies 2

When communication cost is significant:

Still use greedy strategy, but:
I At each assignment step, choose between assigning O to least loaded

processor and the processor that already has objects that communicate
most with O.

F Based on the degree of difference in the two metrics
F Two-stage assignments:

In early stages, consider communication costs as long
as the processors are in the same (broad) load class,
In later stages, decide based on load

Branch-and-bound

Searches for optimal, but can be stopped after a fixed time

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 26 / 1

Crack Propagation

Decomposition into 16 chunks (left) and 128 chunks, 8 for each PE
(right). The middle area contains cohesive elements. Both decompositions
obtained using Metis. Pictures: S. Breitenfeld, and P. Geubelle
As computation progresses, crack propagates, and new elements are
added, leading to more complex computations in some chunks

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 27 / 1

Load Balancing Crack Propagation

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 28 / 1

Distributed Load balancing

Centralized strategies
I Still ok for 3000 processors for NAMD

Distributed balancing is needed when:
I Number of processors is large and/or
I load variation is rapid

Large machines:
I Need to handle locality of communication

F Topology sensitive placement

I Need to work with scant global information
F Approximate or aggregated global information (average/max load)
F Incomplete global info (only neighborhood)
F Work diffusion strategies (1980s work by Kale and others!)

I Achieving global effects by local action

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 29 / 1

Load Balancing on Large Machines

Existing load balancing strategies dont scale on extremely large
machines

Limitations of centralized strategies:
I Central node: memory/communication bottleneck
I Decision-making algorithms tend to be very slow

Limitations of distributed strategies:
I Difficult to achieve well-informed load balancing decisions

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 30 / 1

Simulation Study - Memory Overhead

lb test experiments performed with the performance simulator BigSim

lb test benchmark is a parameterized program that creates a specified
number of communicating objects in 2D-mesh.Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 31 / 1

Hierarchical Load Balancers

Partition processor allocation into processor groups

Apply different strategies at each level

Scalable to a large number of processors

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 32 / 1

Our Hybrid Scheme

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 33 / 1

Hybrid Load Balancing Performance

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 34 / 1

Summary

Use Profiling and Performance Analysis Tools Early
I Measure twice, cut once!
I Look for overloaded processors, not underloaded processors

Use PUP for object serialization
I Enables Migration for Load Balancing or Fault Tolerance

Don’t forget to consider granularity

Laxmikant V. Kalé, Eric Bohm (UIUC) Load Balancing 2012/9/25 35 / 1

