Task Parallelism

@ Divide-and-conquer

» Each task recursively creates n tasks that divide the problem into
subproblems

» Each task ¢ then waits for all n tasks to finish and then may ‘combine’
the responses

» At some point the recursion stops (at the bottom of the tree), and
some sequential kernel is executed

» Then the result is propagated upward in the tree recursively

» Examples: fibonacci, quick sort, ...

Laxmikant V. Kale Basic Charm++ September 6, 2012 1/15



Task Parallelism

@ State-space search

» Each task recursively creates n tasks to partition the search space
» If the problem is one-solution search, as soon as a task encounters a
solution, the program may need to terminate

* Kill-chasing problem

o All-solution search may require behaviour much like
divide-and-conquer where values are combined

» Example: all-solution nqueens
» Number of solutions are accumulated recursively up the tree

Laxmikant V. Kale Basic Charm++ September 6, 2012 2/15



Fibonacci Example

@ Each Fib chare is a task that performs one of two actions:

» Creates two new Fib chares to compute fib(n — 1) and fib(n — 2)
and then waits for the response, adding up the two responses when
they arrive

* After both arrive, sends a response message with the result to the
parent task
* Or prints the value and calls CkExit() if it is the root

» If n=1or n =0 (passed down from the parent) it sends a response

message with n back to the parent task

Laxmikant V. Kale Basic Charm++ September 6, 2012 3/15



Fibonacci Example

mainmodule fib {

mainchare Main {
entry Main(CkArgMsg* m);
i

chare Fib {
entry Fib(int n, bool isRoot, CProxy_Fib parent);
entry void response(int value);
i
+

Laxmikant V. Kale Basic Charm++ September 6, 2012 4/15



Fibonacci Example

struct Main : public CBase_Main {
Main(CkArgMsg* m) {
CProxy_Fib::ckNew(atoi(m— >argv[1]), true, CProxy_Fib());

}
}

struct Fib : public CBase_Fib {
CProxy-Fib parent; bool isRoot; int result, count;

Fib(int n, bool isRoot_, CProxy_Fib parent_)
: parent(parent.), isRoot(isRoot.), result(0), count(n < 271 :2) {

if (n < 2) response(n);

else {
CProxy_Fib::ckNew(n — 1, false, thisProxy);
CProxy_Fib::ckNew(n — 2, false, thisProxy);

}

void response(int val) {
result += val;
if (——count == 0) {
if (isRoot) {
CkPrintf(” Fibonacci number is: %d\n", result);
CkExit();
} else {
parent.response(result);
delete this;

}
}
}

Laxmikant V. Kale Basic Charm++ September 6, 2012 5/15




Fibonacci Execution

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 /15



Fibonacci Execution

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 /15



Fibonacci Execution

@

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 /15



Fibonacci Execution

@@

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 /15



Fibonacci Execution

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 /15



Fibonacci Execution

@@

@

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 /15



Fibonacci Execution

s

& ® OE ©

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 /15



Fibonacci Execution

(o)
.

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 /15



Fibonacci Execution

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 /15



Fibonacci Execution

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 /15



Fibonacci Performance

@ How much work/computation does each chare do in this example?
@ What are some of the overheads of this approach?

@ Is there way we can reduce/amortize the overhead?

Laxmikant V. Kale Basic Charm++ September 6, 2012 7/15



Possible Solution

@ Set a sequential threshold in the computational tree

» Past this threshold (i.e. when n < threshold), instead of constructing
two new chares, compute the fibonacci sequentially

sequential fib(3)

sequential fib(3) sequential fib(2)

e fib(5), fib(4) are fine grains, fib(3), fib(2) are coarser grains
@ The coarser grains now amortize the cost of the fine-grained execution

Laxmikant V. Kale Basic Charm++ September 6, 2012 8/15



Fibonacci w/Threshold Example

#define THRESHOLD 10
struct Main : public CBase_Main { /x ... same as before ... x/ };

struct Fib : public CBase_Fib {
CProxy-Fib parent; bool isRoot; int result, count;

Fib(int n, bool isRoot_, CProxy_Fib parent_)
: parent(parent.), isRoot(isRoot.), result(0), count(n < THRESHOLD 7 1 : 2) {

if (n < THRESHOLD) response(seqFib(n));
else {
CProxy_Fib::ckNew(n — 1, false, thisProxy);
CProxy_Fib::ckNew(n — 2, false, thisProxy);
}
b

int seqFib(int n) { return (n < 2) ? n : seqFib(n — 1) + seqFib(n — 2); }

void response(int val) {
result += val;
if (——count == 0) {
if (isRoot) {
CkPrintf(” Fibonacci number is: %d\n", result);
CkExit();
} else {
parent.response(result);
delete this;

}
}
}

Laxmikant V. Kale Basic Charm++ September 6, 2012 9/15




Amdahlss Law and Grainsize

@ Original "law":
» If a program has K% sequential section, then speedup is limited to
100
K -
* If the rest of the program is parallelized completely
@ Grainsize corollary:
» If any individual piece of work is > K time units, and the sequential
program takes T4,
* Speedup is limited to %
e So:
» Examine performance data via histograms to find the sizes of
remappable work units
> |f some are too big, change the decomposition method to make smaller
units

Laxmikant V. Kale Basic Charm++ September 6, 2012 10 / 15



Grainsize

@ (working) Definition: the amount of computation per potentially
parallel event (task creation, enqueue/dequeue, messaging, locking. .)

1 processor

Time

p processors

Grainsize

Laxmikant V. Kale Basic Charm++ September 6, 2012 11 /15



Grainsize and Overhead

@ What is the ideal grainsize?
@ Should it depend on the number of processors?

leT(1+§)

Tp:mafc{g,%}
T(1+2
T, = max | g, (pg>}

v: overhead per message,
T),: p processor completion time
g: grainsize (computation per message)

Laxmikant V. Kale Basic Charm++ September 6, 2012 12 / 15



Grainsize and Scalability

1 processor

Time

p processors

Grainsize

Laxmikant V. Kale Basic Charm++ September 6, 2012 13 / 15



Rules of thumb for grainsize

@ Make it as small as possible, as long as it amortizes the overhead
@ More specifically, ensure:

» Average grainsize is greater than kv (say 100)
» No single grain should be allowed to be too large

* Must be smaller than L, but actually we can express it as:
* Must be smaller than kmuv (say 100v)

@ Important corollary:

> You can be at close to optimal grainsize without having to think about
p, the number of processors

Laxmikant V. Kale Basic Charm++ September 6, 2012 14 / 15



How to determine/ensure grainsize

@ Compiler techniques can help, but only in some cases

> Note that they don't need precise determination of grainsize, just one
that will satisfy a broad inequality

* kv < g <mkv (10v < g < 100v)

Laxmikant V. Kale Basic Charm++ September 6, 2012 15 / 15



