
Task Parallelism

Divide-and-conquer
I Each task recursively creates n tasks that divide the problem into

subproblems
I Each task t then waits for all n tasks to finish and then may ‘combine’

the responses
I At some point the recursion stops (at the bottom of the tree), and

some sequential kernel is executed
I Then the result is propagated upward in the tree recursively
I Examples: fibonacci, quick sort, . . .

Laxmikant V. Kale Basic Charm++ September 6, 2012 1 / 15



Task Parallelism

State-space search
I Each task recursively creates n tasks to partition the search space
I If the problem is one-solution search, as soon as a task encounters a

solution, the program may need to terminate
F Kill-chasing problem

All-solution search may require behaviour much like
divide-and-conquer where values are combined

I Example: all-solution nqueens
I Number of solutions are accumulated recursively up the tree

Laxmikant V. Kale Basic Charm++ September 6, 2012 2 / 15



Fibonacci Example

Each Fib chare is a task that performs one of two actions:
I Creates two new Fib chares to compute fib(n− 1) and fib(n− 2)

and then waits for the response, adding up the two responses when
they arrive

F After both arrive, sends a response message with the result to the
parent task

F Or prints the value and calls CkExit() if it is the root

I If n = 1 or n = 0 (passed down from the parent) it sends a response
message with n back to the parent task

Laxmikant V. Kale Basic Charm++ September 6, 2012 3 / 15



Fibonacci Example

mainmodule fib {
mainchare Main {

entry Main(CkArgMsg∗ m);
};

chare Fib {
entry Fib(int n, bool isRoot, CProxy Fib parent);
entry void response(int value);
};
};

Laxmikant V. Kale Basic Charm++ September 6, 2012 4 / 15



Fibonacci Example

struct Main : public CBase Main {
Main(CkArgMsg∗ m) {
CProxy Fib::ckNew(atoi(m−>argv[1]), true, CProxy Fib());
}
};

struct Fib : public CBase Fib {
CProxy Fib parent; bool isRoot; int result, count;

Fib(int n, bool isRoot , CProxy Fib parent )
: parent(parent ), isRoot(isRoot ), result(0), count(n < 2 ? 1 : 2) {

if (n < 2) response(n);
else {
CProxy Fib::ckNew(n − 1, false, thisProxy);
CProxy Fib::ckNew(n − 2, false, thisProxy);
}
}

void response(int val) {
result += val;
if (−−count == 0) {

if (isRoot) {
CkPrintf(”Fibonacci number is: %d\n”, result);
CkExit();
} else {
parent.response(result);
delete this;
}
}
}
};

Laxmikant V. Kale Basic Charm++ September 6, 2012 5 / 15



Fibonacci Execution

fib(5)

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 / 15



Fibonacci Execution

fib(5)

fib(4)
fib(3)

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 / 15



Fibonacci Execution

fib(5)

fib(4)

fib(3) fib(2)

fib(3)

fib(2) fib(1)

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 / 15



Fibonacci Execution

fib(5)

fib(4)

fib(3) fib(2)

fib(1) fib(0)fib(2) fib(1)

fib(3)

fib(2) fib(1)

fib(1) fib(0)

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 / 15



Fibonacci Execution

fib(5)

fib(4)

fib(3) fib(2)

fib(1) fib(0)fib(2) fib(1)

fib(1) fib(0)

fib(3)

fib(2) fib(1)

fib(1) fib(0)

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 / 15



Fibonacci Execution

fib(5)

fib(4)

fib(3) fib(2)

fib(1) fib(0)fib(2) fib(1)

fib(1) fib(0)

fib(3)

fib(2) fib(1)

fib(1) fib(0)

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 / 15



Fibonacci Execution

fib(5)

fib(4)

fib(3) fib(2)

fib(1) fib(0)fib(2) fib(1)

fib(3)

fib(2) fib(1)

fib(1) fib(0)

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 / 15



Fibonacci Execution

fib(5)

fib(4)

fib(3) fib(2)

fib(3)

fib(2) fib(1)

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 / 15



Fibonacci Execution

fib(5)

fib(4)
fib(3)

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 / 15



Fibonacci Execution

fib(5)

Laxmikant V. Kale Basic Charm++ September 6, 2012 6 / 15



Fibonacci Performance

How much work/computation does each chare do in this example?

What are some of the overheads of this approach?

Is there way we can reduce/amortize the overhead?

Laxmikant V. Kale Basic Charm++ September 6, 2012 7 / 15



Possible Solution

Set a sequential threshold in the computational tree
I Past this threshold (i.e. when n < threshold), instead of constructing

two new chares, compute the fibonacci sequentially

fib(5)

fib(4)

fib(3) fib(2)

fib(3)

sequential fib(3) sequential fib(2)

sequential fib(3)

fib(5), fib(4) are fine grains, fib(3), fib(2) are coarser grains

The coarser grains now amortize the cost of the fine-grained execution

Laxmikant V. Kale Basic Charm++ September 6, 2012 8 / 15



Fibonacci w/Threshold Example

#define THRESHOLD 10

struct Main : public CBase Main { /∗ ... same as before ... ∗/ };

struct Fib : public CBase Fib {
CProxy Fib parent; bool isRoot; int result, count;

Fib(int n, bool isRoot , CProxy Fib parent )
: parent(parent ), isRoot(isRoot ), result(0), count(n < THRESHOLD ? 1 : 2) {

if (n < THRESHOLD) response(seqFib(n));
else {
CProxy Fib::ckNew(n − 1, false, thisProxy);
CProxy Fib::ckNew(n − 2, false, thisProxy);
}
}

int seqFib(int n) { return (n < 2) ? n : seqFib(n − 1) + seqFib(n − 2); }

void response(int val) {
result += val;
if (−−count == 0) {

if (isRoot) {
CkPrintf(”Fibonacci number is: %d\n”, result);
CkExit();
} else {
parent.response(result);
delete this;
}
}
}
};

Laxmikant V. Kale Basic Charm++ September 6, 2012 9 / 15



Amdahlss Law and Grainsize

Original “law”:
I If a program has K% sequential section, then speedup is limited to

100
K .

F If the rest of the program is parallelized completely

Grainsize corollary:
I If any individual piece of work is > K time units, and the sequential

program takes Tseq,

F Speedup is limited to
Tseq

K

So:
I Examine performance data via histograms to find the sizes of

remappable work units
I If some are too big, change the decomposition method to make smaller

units

Laxmikant V. Kale Basic Charm++ September 6, 2012 10 / 15



Grainsize

(working) Definition: the amount of computation per potentially
parallel event (task creation, enqueue/dequeue, messaging, locking. .)

Laxmikant V. Kale Basic Charm++ September 6, 2012 11 / 15



Grainsize and Overhead

What is the ideal grainsize?

Should it depend on the number of processors?

T1 = T
(
1 + v

g

)
Tp = max

{
g, T1

p

}
Tp = max

{
g,

T
(
1+ v

g

)
p

}
v: overhead per message,

Tp: p processor completion time
g: grainsize (computation per message)

Laxmikant V. Kale Basic Charm++ September 6, 2012 12 / 15



Grainsize and Scalability

Laxmikant V. Kale Basic Charm++ September 6, 2012 13 / 15



Rules of thumb for grainsize

Make it as small as possible, as long as it amortizes the overhead

More specifically, ensure:
I Average grainsize is greater than kv (say 10v)
I No single grain should be allowed to be too large

F Must be smaller than T
p
, but actually we can express it as:

F Must be smaller than kmv (say 100v)

Important corollary:
I You can be at close to optimal grainsize without having to think about

p, the number of processors

Laxmikant V. Kale Basic Charm++ September 6, 2012 14 / 15



How to determine/ensure grainsize

Compiler techniques can help, but only in some cases
I Note that they don’t need precise determination of grainsize, just one

that will satisfy a broad inequality
F kv < g < mkv (10v < g < 100v)

Laxmikant V. Kale Basic Charm++ September 6, 2012 15 / 15


