
Chapter 2

Simple Programs and Basic Chares

In this chapter, you will learn about the basic primitives in the Charm++ language using a
series of simple examples. You will learn finbout the basic parallel objects of Charm++, called
chares, and you will also learn the basic structure of a Charm++ program.

2.1 Chares: Message-driven Objects

We provide a series of examples that illustrate the use of singleton chares, which are a good
way of introducing several basic concepts in Charm++ (although most real computational sci-
ence and engineering applications will be written using chare arrays, which we will introduce
in the next chapter).

A chare is essentially a C++ object, with a few special properties:

• A chare class inherits from a system-defined base class.

• A chare class supports an operator for creating new instances (objects) on remote
processors.

• A chare class may have a new category of methods called entry methods. Entry methods
can be asynchronously invoked from remote processors.

It is not necessary to understand these properties completely at this point. We will go
through a series of examples that will introduce and clarify these properties.

Although Charm++ is a distinct parallel programming paradigm, it is not a new language.
Your programs should be written in standard C++. However, to support its parallel features,
the Charm++ system needs some additional information from you, the programmer. This
information is provided in an interface file, which has the extension .ci. We will learn about
the contents of this file in the examples of this chapter.

17

18 CHAPTER 2. SIMPLE PROGRAMS AND BASIC CHARES

Learning by
Example

The best way to
learn the
material of this
chapter is to
install Charm++

on your desktop,
type in the
example codes,
and run them.

Let us tell you what we think will be the best way to learn the material of this chapter:
Obtain access to an installation of Charm++. The simplest approach would be to install a
multicore version on your multicore desktop. (What? You don’t yet have one? Tsk tsk.)
The examples in this chapter were tested on an 8-core desktop. Alternatively, you could
use a cluster version. Let’s assume your friendly system administrator (which might be you
yourself) has already installed Charm++. You can enter each example program into files
in their own directory, compile those file and run the resulting executable. You could also
cut-and-paste or just use the examples from the Charm++ website. However, we find that
typing each statement by hand facilitates the better absorption of the concepts. Your style
may vary.

Please note, the examples in this chapter (and many in the next chapter as well) are very
basic. You will not be running anything in parallel until the last few examples, and those
programs don’t do anything very useful even when they are run in parallel. But we promise
that these simple programs will help you to learn and remember the basic concepts. In later
chapters we will get a chance to read and write several much more interesting programs.

2.1.1 Example: Hello World

The execution of every Charm++ program begins with the creation of an instance of a specially
designated class called the main class.1 In interface files, this class is designated by the
keyword mainchare.

Our first program is a simple “Hello world” program that introduces many elements
common to all Charm++ programs. This program has just one class called Main. This class
happens to be a chare class. In particular, it happens to be a chare class designated as a
main chare. Since we have a chare class in the program, we must tell the system about it in
the interface file. The interface file for the Main chare is shown in figure 2.2.

A Charm++ program is organized as a collection of modules. Each module may contain
one or more chare classes, and has one interface file associated with it. A module that con-
tains a main chare is designated by the keyword mainmodule. Other modules are designated
by the keyword module. We choose to name our module hello. This happens to be the same
as the name of the file (hello.ci) but this is not necessary. Declarations of all the chares in
each module are enclosed in the module statement:

module <modulename> { ... chare definitions };

Don’t forget the “;” after the last curly brace, or else you will get some obscure error message
while “compiling” the interface file.

1In fact there can be multiple classes designated as main: the system will create one instance of each main
class.

2.1. CHARES: MESSAGE-DRIVEN OBJECTS 19

For our example program, there is only one chare class in module hello. Since this
happens to be a main chare, we designate it as such by the keyword mainchare. This chare
has only method, namely its constructor. However, all the constructors of a chare class are
entry methods, by definition. This is because an instance of a chare class (simply called a
chare from now on), can be created from a remote processor; any time a method can be
remotely invoked, it must be an entry method. Since all entry methods must be declared
in the interface file, we declare the Main method here. All main chares have a standard
constructor that takes a pointer to a system defined class (called CkArgMsg) as its only
parameter. So, we declare that fact in our interface file. Again, don’t forget the “;” after the
class definition.

The hello.C file is shown in Figure 2.3. Several features in this file deserve explanation.
First, notice that the class Main is defined as a subclass of CBase_Main. Where did this class
come from? The Charm++ system compiles the .ci interface file, and produces some files
that declare and define several additional classes for each chare class defined in that interface
file. CBase_Main is such a class. Inheriting from it allows our Main class to be created
as a chare class, and is thus required. The declaration of CBase_Main (and several other
declarations) are stored in a file called hello.decl.h by the interface translator included
with the Charm++ system. The definitions of CBase_Main (and other classes) are generated
in a file called hello.def.h. That is why our hello.C includes those two files at its beginning
and at its end, respectively.

The other difference from a regular C++ program is the absence of the main function.
Instead, program execution begins with the constructor of the main chare Main. This con-
structor, in this program, includes only two statements. The first prints “Hello World!” to
the output stream ckout. Note that the standard output stream cout does not work in a
parallel program. Instead, the Charm++ runtime system (RTS) defines its own output stream
named ckout.

The second statement calls CkExit(), which tells the RTS to stop the execution of the
program on all its processors that are running this program. If you call exit() instead, only
the processor which happens to be executing that statement will quit, without performing
the requisite cleanup functions of the RTS, and the other processors will simply hang waiting
for something to happen.

To compile this program, you first issue a command to translate the interface file. A script
called charmc can handle such processing automatically. Thus you simply type charmc hello.ci

at the command line. (At this time, charmc must be in your path, or you must specify the
full path to it. See the Charm++ installation instructions if Charm++ is not already installed
on your computer.)

The charmc script processes the interface file to create two files, the hello.decl.h file
and the hello.def.h file, which are to be included in the .C file. Refer to figure 2.1.

You now compile the .C file. The charmc script knows (among other things) where the
system header files and libraries are located. So, instead of using the normal C++ compilation

20 CHAPTER 2. SIMPLE PROGRAMS AND BASIC CHARES

Figure 2.1: Build process of a chare class. NOTE: If a header file isn’t used for the chare
class, as is the case with the examples in this chapter, simply include the xxx.decl.h file at the
top of the source code file in place of the xxx.h file.

command (such as gcc or CC), you use charmc to compile and link your program. charmc

will call your normal compiler (set at installation time internally).

charmc hello.ci

charmc -c hello.C

charmc -o hello hello.C

At this point, you have created an executable file hello. How to execute this in parallel
depends on what machine you are using.

On a multicore (or even a single core) desktop, you type:

hello +p7

The +p7 tells the system to use seven cores2.

On a cluster of workstations connected by ethernet, you type:

charmrun hello +p7

The charmrun script, which is created in your folder3 by charmc when it creates the exe-
cutable, is responsible for starting processes on appropriate workstations, along with other
startup and monitoring functions.

If everything worked correctly, you should see the words “Hello World!” on your screen
when you run the program. Otherwise, this a good point at which to get some help and make
sure your installation works correctly in the context of this simple example.

2It actually fires seven Posix threads on Linux machines.
3We will use the words “folder” and “directory” interchangeably.

2.1. CHARES: MESSAGE-DRIVEN OBJECTS 21

1 mainmodule hello {

2

3 mainchare Main {

4 entry Main(CkArgMsg *m);

5 };

6 };

Figure 2.2: Hello World: the interface file hello.ci

1 #include <stdio.h>

2 #include "hello.decl.h"

3

4

5 /*mainchare*/

6 class Main : public CBase_Main

7 {

8 public:

9 Main(CkArgMsg* m)

10 {

11 ckout << "Hello World!" << endl;

12 CkExit();

13 };

14 };

15

16 #include "hello.def.h"

Figure 2.3: Hello World: the C++ file hello.C

22 CHAPTER 2. SIMPLE PROGRAMS AND BASIC CHARES

2.1.2 Example: Hello World with Command Line Arguments

Remember the argument CkArgMsg *m for the constructor of the main chare, in the example
above? CkArgMsg is a class with two members: argc, which is an integer, and argv, which
is a pointer to an array of strings. This is how command line arguments are handed over to
the application program: argc is the number of command line arguments, and argv[i] is
the string representing the ith command line argument.

It is important to note that some of the command line arguments are “consumed” by the
Charm++ runtime, and are not passed to the main chare. In particular, the +p7 argument is
not passed to the main chare. As usual, the argv[0] contains the name of the executable,
which in this case is hello.

1 #include <stdio.h>

2 #include "hello.decl.h"

3

4

5 /*mainchare*/

6 class Main : public CBase_Main

7 {

8 public:

9 Main(CkArgMsg* m)

10 {

11 ckout << "Hello World!" << endl;

12 if (m->argc > 1)

13 ckout << "and Hello " << m->argv[1] << "!!!" << endl;

14 CkExit();

15 };

16 };

17

18 #include "hello.def.h"

Figure 2.4: Processing Command Line arguments: the file hello.C

To illustrate this further, consider a small variation of the above program, as shown in
Figure 2.4. Note that the only difference is the addition of lines 12 and 13, which print the
string argv[1]. Try running this program with an additional argument, which could be your
first name:

> charmrun hello Sanjay +p7

Hello World!

2.2. CREATING CHARES 23

and Hello Sanjay!!!

2.2 Creating Chares

Since the execution of the program begins with the creation of one instance of the main chare,
it is clear that the main chare must create at least some of the other chare objects (which we
will simply call chares from now on) if the program computation is to have multiple chares.
Either the main chare creates all the chares of the program, or it creates chares that create
other chares some time during their execution, and so on. Our next example shows how
chares are created.

Figure 2.5 shows the interface file for this program. This file specifies that in addition to
the mainchare Main (which still has only one method, a constructor, in this example), we now
have another chare class named Simple, which also has only a constructor entry method. It
takes an integer and a double precision floating point number as its parameters.

The correspnding C++ file is shown in Figure 2.6. Since chares are special objects, which
may live on different processors than the one that created them, the standard new call will
not do. If you were to call new(12, pi), all that you would get is the creation of an instance
of the Simple chare on the same processor that the main chare is running on, and it will not
be registered with the runtime system, so no messages can be sent to it. It would be just
a sequential C++ object. Instead, one uses the ckNew class method of the system-generated
class CProxy_Simple. This is one of the classes generated by the system using your interface
file, and its declatation is included in MyModule.decl.h.

1 mainmodule MyModule {

2

3 mainchare Main {

4 entry Main(CkArgMsg *m);

5 };

6

7 chare Simple {

8 entry Simple(int x, double y);

9 };

10

11 };

Figure 2.5: Creating Chares: the interface file hello.ci

Incidentally, note that the name of this file is not hello.decl.h: the names of generated
files are <Modulename>.decl.h and <Modulename>.def.h respectively, where <Modulename>

24 CHAPTER 2. SIMPLE PROGRAMS AND BASIC CHARES

1 #include <stdio.h>

2 #include "MyModule.decl.h"

3

4 /*mainchare*/

5 class Main : public CBase_Main

6 {

7 public:

8 Main(CkArgMsg* m)

9 {

10 ckout << "Hello World!" << endl;

11 if (m->argc > 1)

12 ckout << "and Hello " << m->argv[1] << "!!!" << endl;

13 double pi = 3.1415;

14 CProxy_Simple::ckNew(12, pi);

15 };

16 };

17

18 class Simple : public CBase_Simple

19 {

20 public:

21 Simple(int x, double y)

22 {

23 ckout << "Hello from a simple chare running on " << CkMyPe() << endl;

24 ckout << "Area of a circle of radius" << x << " is " << y*x*x << endl;

25 CkExit();

26 }

27 };

28

29 #include "MyModule.def.h"

Figure 2.6: Creating Chares: the C++ file hello.C

2.3. ASYNCHRONOUS METHOD INVOCATION (A.K.A. SENDING MESSAGES) 25

is what you specified inside the interface file.

The ckNew call tells the Charm++ RTS to create, at its convenience some time in future,
an instance of the Simple chare on some processor of its choosing, with the parameters
specified.

The constructor of the Simple chare itself just prints two lines, with the second line
printing the area of a circle. The two parameters passed to it are the radius of the circle and
the value of π. Of course, since value of π is constant, you shouldn’t have to pass it, but
passing it as a parameter here serves our purpose of illustrating parameter passing.

One thing in particular should be noted about print statements. Since different chares
may be running on different processors, and their output may be merged depending on what
arrives first at the processor in charge of printing to the screen, you cannot assume any order
among the print statements beyond the fact that two strings printed from the same chare
will appear in the same order in the output. Thus, the string coming from line 10 will appear
before that from line 12, and that coming from line 23 before that of 24. But other than
that, no ordering can be inferred even though the constructor of Simple is clearly going to
execute after the prints in the Main constructor4.

Finally, notice that we moved the CkExit() call into the constructor of Simple, since
that is the last entry method that will execute.

Again, you should compile and run this program. It is simple, but it will help you get in
the habit of testing things, and typing the program will reinforce what you are learning.

2.3 Asynchronous Method Invocation (a.k.a. Sending Mes-
sages)

So far, our example programs show how to write interface files and create chares. The next
example shows how to use asynchronous method invocation.

The interface file of Figure 2.7 is very similar to the previous one, except that we have
added a new entry method called findArea to Simple. We are now going to pass pi only
while constructing an instance of the Simple chare class (i.e. a Simple chare), and pass only
the radius to findArea on each subsequent call. We are also passing an additional boolean
parameter done, which is TRUE (or 1) when we want to tell the Simple chare that this is the
last query for it, and that it can exit after this.

The C++ file is shown in Figure 2.8. The main thing to notice is the on line 14, we are
storing the value returned by ckNew in a variable sim of type CProxy_Simple. This is called
the proxy for the created Simple chare. sim is an object which has the same entry methods

4There are debugging options that make such causally connected prints to appear in order. Refer to
the +syncprint command-line option Charm++manual. Adding +syncprint as a command-line option to
your Charm++program will cause all CkPrintf() statements to be queued at a single location. This option
synchronizes the print statements at the cost of application performance.

26 CHAPTER 2. SIMPLE PROGRAMS AND BASIC CHARES

as the Simple class, yet these methods simply copy the parameters you pass into a message,
put the address of the real object and the name of the method on its “envelope”, and send
it to the processor that holds that object.

1 mainmodule MyModule {

2

3 mainchare Main {

4 entry Main(CkArgMsg *m);

5 };

6

7 chare Simple {

8 entry Simple(double y);

9 entry void findArea(int radius, bool);

10 };

11

12 };

Figure 2.7: Async Method Invocation: the interface file hello.ci

That was a simple program, right? However, the program is WRONG. If you run it, it
will mostly run correctly, but once in a while (on some machines) it may terminate without
processing all the findArea requests. Do you know why? In fact, on most machines today,
it will run correctly, but the program is still incorrect. The fix will be in the next example,
but let us first understand why.

[In the base mode described here] Charm++ does not guarantee that two messages sent
by chare A to chare B will be delivered (and executed) in the same order! So, what you think
of as the “last” message (findArea(10,1)), in the example above, may execute before an
earlier message (say findArea(8,0)), and terminate the program prematurely.

Why does charm not guarantee in-order delivery? There are two reasons for this: first,
their is a cost in guaranteeing in-order delivery. On many machines, the raw messages may
be delivered out of order anyways. Someone somewhere has to keep track of this, using
sequence numbers on messages and buffering them until the right message arrives, if you
want to guarantee in-order delivery. We’d rather not pay that cost unless it is necessary.
When it is necessary, you can yourself do the buffering, add the sequence numbers to the
message (or use an existing field, such as the first parameter in this example). Later on, we
will see another notation built on top of Charm that also ensures in-order delivery. But we
want to keep the base-line Charm++ flexible to allow either usage.

Secondly, there are situations where one would rather reorder messages. On each phys-
ical processor core, Charm++ RTS runs a scheduler, which picks a message (which is an
asynchronous method invocation, stored in a general “envelope”), identifies the chare object

2.3. ASYNCHRONOUS METHOD INVOCATION (A.K.A. SENDING MESSAGES) 27

1 #include <stdio.h>

2 #include "MyModule.decl.h"

3

4 /*mainchare*/

5 class Main : public CBase_Main

6 {

7 public:

8 Main(CkArgMsg* m)

9 {

10 ckout << "Hello World!" << endl;

11 if (m->argc > 1)

12 ckout << "and Hello " << m->argv[1] << "!!!" << endl;

13 double pi = 3.1415;

14 CProxy_Simple sim = CProxy_Simple::ckNew(pi);

15 for (int i = 1; i< 10; i++)

16 sim.findArea(i, 0);

17 sim.findArea(10,1);

18 };

19 };

20

21 class Simple : public CBase_Simple

22 {

23 private:

24 float y;

25 public:

26 Simple(double pi)

27 {

28 y = pi;

29 ckout << "Hello from a simple chare running on " << CkMyPe() << endl;

30 }

31

32 void findArea(int r, bool done)

33 {

34 ckout << "Area of a circle of radius" << r << " is " << y*r*r << endl;

35 if (done) CkExit();

36 }

37 };

38

39 #include "MyModule.def.h"

Figure 2.8: Async Method Invocation: the C file hello.C

28 CHAPTER 2. SIMPLE PROGRAMS AND BASIC CHARES

indicated on the envelope, unpacks the parameters from the message and invokes the indi-
cated method on it. As a result of this invocation, new method invocations may get enqueued
on your own queue and/or on some other processor’s queue. The scheduler’s queue gives the
RTS an opportunity to reorder messages to the benefit of the program. For example, one can
prioritize certain kinds of messages (see XXXXXX chapter for this); One wants high priority
messages to the same object to execute before earlier-sent low-priority messages. This is
another reason for not enforcing in-order execution.

One needs to get used to thinking asynchronously, to ensure the program will work ir-
respective of the order in which messages get delivered. This thinking is useful in parallel
programming anyways. Even if one were to guarantee in-order delivery between a pair of
objects, the asynchrony exist in parallel programs in many other ways, and so it is useful to
develop this asynchronous mode of thinking.

The counterpoint to this argument is that if we can limit this asynchrony to fewer places
there is smaller chance of order-dependent bugs. The logical conclusion of this is a determin-
istic parallel language where things always execute in a specific order (and when they don’t,
its guranteed that they will have the same effect). Such languages are higher level languages,
and they have been built on top of Charm++.

We will return to this example after we have done a few more examples. The next example
will circumvent the issue by a simple design trick, whic is worth using in such situations, where
you really didn’t care about the order in which various “findArea” queries are execute, but
you want the program to terminate only after finishing all the queries.

2.4 Replying Using a Chare ID

In the previous example, the main chare invoked the findArea method on the instance
of the Simple chare that it had created. It therefore had a proxy to that chare, stored in the
variable sim. How do you invoke a method on a chare that you did not create? Somehow,
you must obtain a proxy to the object. The next example illustrates one way this can be
done.

Proxy objects are simple objects that can be passed in messages. If the main chare were
to pass its own proxy to the chare it creates, that chare can store this proxy, and use it to
reply back to the main chare.

In the interface file shown in Figure 2.9, we have added a new method called printArea

to the main chare. In addition, we added one more parameter to the Simple chare class’s
constructor, of type CProxy_Main. Also, since the main chare can now call CkExit after
printing the last result, we don’t need to pass the boolean parameter to findArea.

The corresponding C++ file is shown in Figure 2.10. Incidentally, if the declaration of
an entry method in the interface file does not match that in your .C or .h file, you will get
errors from the compiler such as no matching function call.

2.5. CREATING MANY CHARES: A FIRST BRUSH WITH LOAD BALANCING 29

1 mainmodule MyModule {

2

3 mainchare Main {

4 entry Main(CkArgMsg *m);

5 entry void printArea(int r, double area);

6 };

7

8 chare Simple {

9 entry Simple(double y, CProxy_Main m);

10 entry void findArea(int radius, bool);

11 };

12

13 };

Figure 2.9: Replying to Chares: the interface file hello.ci

The main chare now initializes an object-level variable count which it initializes to ten, the
number of chares it created. The printArea method prints the area returned by findArea,
and exits once it has received ten results. Notice that even if the ten results arrive out of
order, the program will exit only after all ten have been printed. Notice also that we shouldn’t
omit the parameter r and assume the ith result returned will be for radius i, although the
for loop in Main::Main might make you think that. The messages carrying the queries and
results can, in principle, take varying amounts of time and thus return in a different order.

2.5 Creating Many Chares: A First Brush with Load Balanc-
ing

The examples so far were hardly parallel; there were at most two chares. Now we will write
a program that creates a large number of chares.

We will make a Worker chare whose constructor does the work of calculating the area,
given a radius and the value of π. By the way, computing the area is really a very tiny
amount of work and doesn’t deserve to be done by an entire parallel object. If that bothers
you, wait for the next example, where we return to this issue of grainsize control. This
example is somewhat like the program of Figure 2.6 that we saw earlier. Accordingly, there
is no findArea method now.

The interface file is shown in Figure 2.11. We have named the main chare Master now, but
it is otherwise very similar to earlier versions, with the exception of the readonly declaration,
which we will explain shortly. The C++ program is shown in Figure 2.12.

We are using a different method to make the proxy of the main chare available to each

30 CHAPTER 2. SIMPLE PROGRAMS AND BASIC CHARES

1 #include <stdio.h>

2 #include "MyModule.decl.h"

3

4 /*mainchare*/

5 class Main : public CBase_Main

6 {

7 private:

8 int count;

9 public:

10 Main(CkArgMsg* m)

11 {

12 ckout << "Hello World!" << endl;

13 double pi = 3.1415;

14 CProxy_Simple sim = CProxy_Simple::ckNew(pi, thisProxy);

15 for (int i = 1; i <= 10; i++)

16 sim.findArea(i, 0);

17 count = 10; // wait for 10 responses

18 };

19

20 void printArea(int r, double area) {

21 ckout << "Area of a circle of radius" << r << " is " << area << endl;

22 count--;

23 if (count == 0) CkExit();

24 }

25

26 };

27

28 class Simple : public CBase_Simple

29 {

30 private:

31 float y;

32 CProxy_Main mainProxy;

33 public:

34 Simple(double pi, CProxy_Main master)

35 {

36 y = pi;

37 mainProxy = master;

38 ckout << "Hello from a simple chare running on " << CkMyPe() << endl;

39 }

40

41 void findArea(int r, bool done)

42 {

43 mainProxy.printArea(r, y*r*r);

44

45 }

46 };

47

48 #include "MyModule.def.h"

Figure 2.10: Replying to Chares: the C++ file hello.C

2.5. CREATING MANY CHARES: A FIRST BRUSH WITH LOAD BALANCING 31

1 mainmodule MyModule {

2

3 readonly CProxy_Master mainProxy;

4

5 mainchare Master {

6 entry Master(CkArgMsg *m);

7 entry void printArea(int r, double area);

8 };

9

10 chare Worker {

11 entry Worker(int r, double y);

12 };

13

14 };

Figure 2.11: Many Chares: the interface file hello.ci

instance of the Worker chare. Instead of having to send it to them as an additional constructor
parameter, we assign it to the global read-only variable mainProxy just once.

Charm++ does not allow you to use global variables, except when they are declared as
readonly. Read-only variables are declared in the interface file by preceding their declaration
by the keyword readonly. In addition, it is required that they can be set and changed only in
construtors of main chares, or from functions/methods called directly (not asynchronously)
from there. The RTS essentially takes a snapshot of the values of all read-only variables at
the end of the main chare constructor, and copies them onto all physical processors (and
expects you never to change themsubsequently, although it has no real way of checking this
except in some debug modes).

Here, we initialize mainProxy in the Master::Master (line 18), and never change it
anywhere else in the program. Each Worker, irrespective of which processor it is running on,
has access to a valid copy of mainProxy, which it uses (line 38) to send results to the main
chare. Note that mainProxy is not a keyword. It is just a variable that you could have named
whatever you wanted.

The Master chare now creates ten Worker chare instances (line 16). What processor will
they be created on? That is something that the Charm++ RTS will handle, and you shouldn’t
have to think about that. In later chapters, you will read about seed balancers and how the
system manages to create these chares in a load-balanced manner. You will also learn of
tehcniques to override the system placement of chares that allow you to specify where to
create each chare. But our basic mode of operation is to let the system decide where to place
chares.

32 CHAPTER 2. SIMPLE PROGRAMS AND BASIC CHARES

1 #include <stdio.h>

2 #include "MyModule.decl.h"

3

4 CProxy_Master mainProxy; // readonly

5

6 /*mainchare*/

7 class Master: public CBase_Master

8 {

9 private:

10 int count;

11 public:

12 Master(CkArgMsg* m)

13 {

14 double pi = 3.1415;

15 for (int i = 1; i <= 10; i++)

16 CProxy_Worker::ckNew(i, pi);

17 count = 10; // wait for 10 responses.

18 mainProxy= thisProxy;

19 };

20

21 void printArea(int r, double area) {

22 ckout << "Area of a circle of radius" << r << " is " << area << endl;

23 count--;

24 if (count == 0) CkExit();

25 }

26

27 };

28

29 class Worker : public CBase_Worker

30 {

31 private:

32 float y;

33 public:

34 Worker(int r, double pi)

35 {

36 y = pi;

37 ckout << "Hello from a simple chare running on " << CkMyPe() << endl;

38 mainProxy.printArea(r, y*r*r);

39 }

40

41 };

42

43 #include "MyModule.def.h"

Figure 2.12: Many Chares: the C++ file hello.C

2.5. CREATING MANY CHARES: A FIRST BRUSH WITH LOAD BALANCING 33

2.5.1 Example: Calculating Pi

Many of our programs have been using the value of π. For a slightly more realistic parallel
program, we will now calculate the value of π using a master-slave approach.

The area of a circle of radius 1 unit is π, whereas the area of a square of size 2 units,
within which such a circle is inscribed, is 4. So, if we throw random darts inside the square,
and assuming the darts are thrown uniformly randomly within the square, the ratio of darts
inside the circle to the total number of darts thrown should approximate π/4.

How do we throw darts in a computer? We will use simple random number generators
that are provided by standard libraries included with C/C++. We will also throw darts in
the positive quadrant, so that, the x and y coordinates of each dart placement is between 0
and 1.0.

A sequential program fragment for this purpose is shown below.

for (int i=0; i<numTrials; i++) {

x = drand48();

y = drand48();

if ((x*x + y*y) < 1.0)

inTheCircle++;

}

approxPi = 4.0 * (((double)inTheCircle)/((double)numTrials));

Suppose we decide that throwing a billion darts (numTrials=1000000000) will give us a
good enough approximation. How many chares should we fire? If your inclination is to a
billion chares, you are thinking like a good object-oriented sequential programmer, but not like
a parallel programmer. Creating a chare takes some time, and messages may have to travel
across processors for each. In fact, if we are creating chares from the main chare constructor
(running on one of the processors), and you have seven processors in all, on average six out of
seven chares will be created on a remote processor. Messages take microseconds to send and
process on today’s (2008) machines, but each trial is going to take only tens of nanoseconds
at most. So, to be competitive with a sequential program, we must group together many
dart-throwing trials in a single chare. How many? This is the issue of grainsize control. A
rule of thumb is that the average work per message should be sufficiently high (say at least
tens of microseconds) to amortize the overhead of messages. So, maybe 10,000 or 100,000
trials per chare will suffice. Notice that this consideration is independent of the total number
of processors. With massive chare creation, we also have to consider the load balancing
overhead. Let us choose to parameterize the computation, so we can experiment with the
grainsize.

Figure 2.13 shows the interface file. The main chare will fire a bunch of Worker instances,
who have only their constructor as their entry method. The main chare receives results from
each Worker instance at its addContribution entry method. The result is simply two counts:

34 CHAPTER 2. SIMPLE PROGRAMS AND BASIC CHARES

1 mainmodule MyModule {

2

3 readonly CProxy_Master mainProxy;

4

5 mainchare Master {

6 entry Master(CkArgMsg *m);

7 entry void addContribution(int numIn, int numTrials);

8 };

9

10 chare Worker {

11 entry Worker(int numTrials);

12 };

13

14 };

Figure 2.13: Calculating Pi: the interface file hello.ci

the number of trials conducted by that chare, and the number of darts that were inside the
circle.

The first section of the .C file, with definition of the main chare, is shown in Figure 2.14.
This is very similar to earlier programs (such as the earlier hello example), and so we leave it
to you to read and understand it. The second section is shown in Figure 2.15 whichs shows
the definition of the Worker. Each worker does its trials and sends the counts to the main
chare.

You should now run this program, and watch if you end up calculating the value of π.
Also, try providing different values on the command line for the numChares parameter, while
holding the value of the numTrials fixed, e.g. at 100 million.

To measure the time the program takes, one can use the CkWallTimer() function provided
by the Charm++. The CkWallTimer() function takes no parameters and returns a single
double value which represents the number of seconds that has elapsed since the program
began. This function can be used to measure the amount of time the calculate takes.

First, add a member variable of type double to the master class. Right before the for

loop that creates the worker chares, store the value returned by a call to CkWallTimer() in
the new member variable. This value represents the start time of the calculation. Second,
right before the call to CkExit() in Master::addContribution(...), insert a second call to
the CkWallTimer() to get the end time of the calculation. By subtracting the start time
from the end time, one can calculate the time taken by the calculation. It should be noted,
however, that this will include the time taken to create the worker chare objects as well as
the time to execute Worker::Worker(...).

2.5. CREATING MANY CHARES: A FIRST BRUSH WITH LOAD BALANCING 35

1 #include <stdio.h>

2 #include "MyModule.decl.h"

3

4 CProxy_Master mainProxy; // readonly

5

6 /*mainchare*/

7 class Master: public CBase_Master

8 {

9 private:

10 int count, totalInsideCircle, totalNumTrials;

11 public:

12 Master(CkArgMsg* m)

13 {

14 if (m->argc < 3) {

15 ckout << "Need numTrials as a command line parameter" << endl;

16 CkExit();

17 }

18 int numTrials = atoi(m->argv[1]);

19 int numChares = atoi(m->argv[2]);

20 if (numTrials % numChares) {

21 ckout << "Need numTrials to be a divisible by numChares.. Sorry" << endl;

22 CkExit();

23 }

24 for (int i = 0; i < numChares; i++)

25 CProxy_Worker::ckNew(numTrials/numChares);

26 count = numChares; // wait for count responses.

27 mainProxy= thisProxy;

28 totalInsideCircle = 0;

29 totalNumTrials = 0;

30 };

31

32 void addContribution(int numIn, int numTrials) {

33 totalInsideCircle += numIn;

34 totalNumTrials += numTrials;

35 count--;

36 if (count == 0) {

37 double myPi = 4.0* ((double) (totalInsideCircle))

38 / ((double) (totalNumTrials));

39 ckout << "Approximated value of pi is:" << myPi << endl;

40 CkExit();

41 }

42 }

43

44 };

Figure 2.14: Calculating Pi: Main chare in hello.C

36 CHAPTER 2. SIMPLE PROGRAMS AND BASIC CHARES

46 class Worker : public CBase_Worker

47 {

48 public:

49 Worker(int numTrials)

50 {

51 int inTheCircle = 0;

52 double x, y;

53 ckout << "Hello from a simple chare running on " << CkMyPe() << endl;

54

55 for (int i=0; i< numTrials; i++)

56 {

57 x = drand48();

58 y = drand48();

59 if ((x*x + y*y) < 1.0)

60 inTheCircle++;

61 }

62 mainProxy.addContribution(inTheCircle, numTrials);

63 }

64

65 };

66

67 #include "MyModule.def.h"

Figure 2.15: Calculating Pi: Worker class in hello.C

2.5. CREATING MANY CHARES: A FIRST BRUSH WITH LOAD BALANCING 37

Another point of consideration for this program is the generation of the random numbers.
Each processor needs to generate a unique random seed. If two processors have the same
initial seeds, they will generate the same sequence of random numbers. This can be accom-
plished by creating a function that sets the seed of the processors random number generator
that is a function of the processor number. The function can be called once on each processor
as the Charm++runtime system starts by marking it as an initproc function in the interface
file. For more on initproc functions, please refer to the Charm++documentation.

2.5.2 Fibonacci: recursively creating chares

In the examples so far, only the main chare has been creating chares. We will now write a short
program that illustrates reursive chare creation, and a typical divide-and-conquer program.
We will use that traditional doubly-recursive algorithm for calculating n’th Fibonacci number,
directly based on the following definition:

Fib(n) = if (n<2) n else Fib(n-1) + Fib(N-2)

This has an exponentioal complexity, and is a rather silly way of calculating n’th Fibonacci
number, expecially since a program with logarithmic time complexity exists! But again, like
many examples here, the purpose is to illustrate Charm++ rather than the parallel algorithm.

This example will also show how to use “.h” header files in Charm++ programs, and
especially there relationship to the decl and def files that must be included at the right place.
The example so far avoided header files because the classes and programs were quite simple,
and we needed to show the example in as few lines of code as possible.

Figure 2.16 shows the interface file, while Figures 2.17 and ?? show the header (.h) file
and the C++ file respectively. We include the decl file at the top of the header file, because
the decl file declares some classes and types (such as CProxy_fib) that the header file uses.
The def file is included at the bottom of the .C file.

If we were to fire chares for all values of n > 1, the chares will be doing very little work,
and the overhead of creating and load-balancing them will be overlwhelming. To itroduce
some terminology: “grainsize” (for our current purposes) is the amount of computation per
parallel operation — which in this case, is creation of Fibonacci chares, and processing of each
response from a child chare. Thus, our grainsize will be too small. So, instead we do some
explicit “grainsize control”: if n is below some pre-defined THRESHOLD, we will calculate
Fib(n) using a sequential version of the (same, doubly recursive) algorithm.

ANother minor point to notice is the empty constructor

main(CkMigrateMessage *m) {}

The reaso for its existence has to do with migratable chares, which we will not encounter
unitl a later chapter. For now, include this line as a necessary “incantation” in every chare
definition.

38 CHAPTER 2. SIMPLE PROGRAMS AND BASIC CHARES

1 mainmodule fib {

2

3 mainchare main

4 {

5 entry main();

6 };

7

8 chare fib

9 {

10 entry fib(int amIroot, int n, CProxy_fib parent);

11 entry void response(int value);

12 };

13

14 };

Figure 2.16: Calculating N’th Fibonacci Number: the interface file fib.ci

1 #include "fib.decl.h"

2

3 class main : public Chare

4 {

5 public:

6 main(CkMigrateMessage *m) {}

7 main(CkArgMsg *m);

8 };

9

10 class fib : public Chare

11 {

12 private:

13 int num, result, count, IamRoot;

14 CProxy_fib parent;

15 public:

16 fib(CkMigrateMessage *m) {}

17 fib(int amIRoot, int n, CProxy_fib parent);

18 void response(int fibValue);

19 void processResult();

20 };

21

Figure 2.17: Calculating N’th Fibonacci Number: the header file fib.h

2.5. CREATING MANY CHARES: A FIRST BRUSH WITH LOAD BALANCING 39

1 #include "fib.h"

2 #define THRESHOLD 10

3

4 main::main(CkArgMsg * m)

5 {

6 if(m->argc < 2) CmiAbort("./pgm N.");

7 int n = atoi(m->argv[1]);

8 CProxy_fib::ckNew(1, n, thishandle);

9 }

10

11 int seqFib(int n) {

12 if (n<2) return n;

13 else return (seqFib(n-1) + seqFib(n-2));

14 }

15

16 fib::fib(int AmIRoot, int n, CProxy_fib parent){

17 IamRoot = AmIRoot;

18 num = n;

19 this->parent = parent;

20 if (n< THRESHOLD) {

21 result =seqFib(n);

22 processResult();}

23 else {

24 CProxy_fib::ckNew(0,n-1, thishandle);

25 CProxy_fib::ckNew(0,n-2, thishandle);

26 result = 0;

27 count = 2; }

28 }

29

30 void fib::response(int fibValue) {

31 result += fibValue;

32 if (--count == 0) processResult();

33 }

34

35 void fib::processResult()

36 {

37 if (IamRoot) {

38 CkPrintf("fib(%d) = %d\n", num, result);

39 CkExit();

40 }

41 else parent.response(result);

42 delete this; /*this chare has no more work to do.*/

43 }

44

45 #include "fib.def.h"

Figure 2.18: Calculating N’th Fibonacci Number: the C++ file fib.C

40 CHAPTER 2. SIMPLE PROGRAMS AND BASIC CHARES

Some Final Notes on the Code Examples in this Chapter

The code examples used throughout this chapter did not use header files to declare classes.
Typically, classes are declared in a header file and the bodies of the member functions of that
class are written in a separate code file. The examples in this chapter do not use a header
file for the sake of brevity and having all the code in one place. The use of header files to
declare classes is fully supported by Charm++. Refer to figure 2.1.

Chapter 3

Chares Arrays: Indexed Collections
of Chares

In chapter 2, chare objects were introduced. Especially in large applications, create each of the
individual chare objects one-by-one would be cumbersome to the programmer. Additionally,
being able to collect a subset of the application’s chare objects into sets or collections for
the purpose of performing certain operations on all elements of the collection or using the
collection’s indexing scheme to more easily code patterns of communication between chare
objects assists the programming in writing applications. In this chapter, we will introduce
the first (and arguably the most widely used) type of collection in the Charm++ programming
model, namely chare arrays.

As the name implies, a chare array is simply an array of chare objects. In some ways,
chare arrays can be thought of as being similar to arrays of primatives in C/C++. For
example, just as an individual integer in an integer array can be identified by using use the
bracket operator (”[]”) on the integer array, the paranthesis operator (”()”) can be used on
the chare array’s proxy object to identify an individual chare object in the array of chare
objects. Unlike primative arrays in C/C++, the individual elements of the chare array will be
distributed across all of the available processing elements (PEs) available to the application.
Further, chare arrays have other characteristics, such as their ability to be dense or sparse,
that set them apart from primitive arrays in C/C++. Additionally, another difference is that
chare arrays can be indexed using one dimension through six dimensions, using bit vectors,
or using strings.

Because chare arrays are collections of active entities (i.e. chare objects) instead of simply
being a collection of data storage locations (e.g. four byte integers), the programmers may
also invoke an entry method on all of the members of the chare array, just as the programmer
can invoke an entry method on a single chare object. The result is that every chare object
within the array will (eventually) execute the entry method invoked by the programmer. This

41

42 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

is commonly referred to as broadcasting to the chare array.

Before delving to deeply into the all of the characteristics and features of chare arrays,
let us try to make the idea more concrete in the reader’s mind via an example. We will begin
with a single application that creates a single chare array, has each element in that array do
something, and then exit once all of the chare array elements have completed their task.

3.1 Hello World from Array

In this section, we will present a simple example program that demonstrates the creation of a
single chare array. In this example, as is the case with all Charm++ programs, starts with the
runtime system creating an instance of the application’s main chare object. The main chare
object will then create a single chare array, the length of which can be specified using by
the user on the program’s command line. As the chare array is created, the constructors of
each of the individual elements in the chare array (i.e. the chare objects) will be called. The
constructor will print a simple message, “Hello World!” and invoke another entry method
on the main chare object to indicate that the given chare object has been created. Once the
last chare object checks in with the main chare object, the chare array will have completed
it’s initialization and the program will exit. Please note, it is not required that each element
of a chare array check in with the main chare object. We do it here simply because that is
our exit condition and thus we need to detect when the condition is met. Figure 3.1 gives an
overview of the control flow of the overall program.

The example program is contained in two files: “simpleMain.ci” (the interface file) and
“simpleMain.C” (the source file). Please note that we are leaving out a header file in this
case simply because the program is short and we wanted to minimize the number of separate
files. Figure 3.2 contains the contents of the interface file. The main chare class is called
“Main” and is declared using the “mainchare” keyword to indicate that it is a main chare
class instead of just a standard chare care. Remember, a main chare is the same as a standard
chare except for one difference, an instance of it will be created automatically by the runtime
system when the application is started. The chare array class is called “Hello” (that is, the
each element in the chare array will be an instance of the “Hello” chare class). The “[1D]”
indicates that the array will be indexed as a single dimensional array where the indexes are
integers. Besides being declared as a 1D array, note that the declaration of the “Hello” chare
array class is declared in much the same way that a singleton chare class is declared.

Figures 3.3 and 3.4 contain code from the “simpleMain.C” source code file for the “Main”
and “Hello” classes, respectively. For the sake of brevity, some portions of the code will be
left out.

When the program begins execution, the constructor of the main chare object is invoked
by the runtime system (see Figure 3.3). The first thing the constructor does is read the
command line arguments given to the program. In this case, the program will accept a single

3.1. HELLO WORLD FROM ARRAY 43

Figure 3.1: Control flow of array based “Hello World!” example program.

1 mainmodule simpleMain {

2

3 mainchare Main {

4 entry Main();

5 entry void checkIn();

6 };

7

8 array [1D] Hello {

9 entry Hello(CProxy_Main mainProxy);

10 };

11 }

Figure 3.2: Simple “Hello World” Chare Array Program: the C file “simpleMain.ci”

44 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

5 class Main : public CBase_Main {

6

7 private:

8 int helloArraySize;

9

10 public:

11 Main(CkMigrateMessage *msg) { }

12 Main(CkArgMsg* msg) {

13

14 // Check to see if there are any command line arguements

15 helloArraySize = DEFAULT_HELLO_ARRAY_SIZE;

16 if (msg->argc > 1) helloArraySize = atoi(msg->argv[1]);

17 if (helloArraySize <= 0) {

18 CkPrintf("[ERROR] :: There should be at least one "

19 "element in the Hello array... exiting.\n");

20 CkExit();

21 }

22

23 // No longer need the message object, so delete it

24 delete msg;

25

26 // Create the chare array with arraySize elements

27 CProxy_Hello helloArray =

28 CProxy_Hello::ckNew(thisProxy, helloArraySize);

29 }

30

31 void checkIn() {

32 static int checkInCount = 0;

33 if ((++checkInCount) >= helloArraySize) CkExit();

34 }

35 };

Figure 3.3: Simple “Hello World” Chare Array Program: Main chare class in the C file
“simpleMain.C”

3.1. HELLO WORLD FROM ARRAY 45

command line argument indicating the length of the chare array it will create. If no value is
given on the command line, it will simply create a chare array of some default size. Next, the
constructor deletes the message it received since it will no longer need any more information
from the message. Finally, the constructor creates an instance of the chare array by calling
the static “CkNew()” function on the chare array’s proxy object. The last argument to the
CkNew() function (“helloArraySize”) indicates the number of elements that the chare array
will contain. The parameters before this value (just one in this case, “thisProxy”) are passed
as parameters to the constructors of each of the array elements as they are created on the
target processors. Here, the main chare object’s proxy object will be passed as a parameter to
each off the array elements’ constructors. Remember, a chare object’s proxy object allows any
other object to interact with the chare object, even if they are located on different physical
processors.

38 class Hello : public CBase_Hello {

39

40 public:

41 Hello(CkMigrateMessage *msg) { }

42 Hello(CProxy_Main mainProxy) {

43 CkPrintf("Hello World! %d\n", thisIndex, CkMyPe());

44 mainProxy.checkIn();

45 }

46 };

Figure 3.4: Simple “Hello World” Chare Array Program: Hello chare class in the C file
“simpleMain.C”

Figure 3.4 contains the code for the Hello chare class. This class is quite simple. The
constructor simply displays the text “Hello World!” to the user by calling the CkPrintf()
function. Then, it invokes the “Main::checkIn()” entry method on the main chare object,
indicating that the given array element has been created. The constructor takes a single
arguement, a proxy object for the main chare object. This is required because the chare
array elements needs a copy of the proxy object in order to invoke entry methods on the
main chare object.

Finally, figure 3.3 contains the code for the “checkIn()” entry method. Each time this
entry method is invoked, the counter “checkInCount” is incremented. When this counter
reaches the length of the chare array, “helloArraySize” set in the main chare object’s con-
structor, all of the elements in the chare array will have completed their constructors and the
main chare will call “CkExit()” to cause the program to terminate.

Figure 3.5 contains some example output generated when the simple “Hello World!”

46 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

program is executed. In this example, the “charmrun” command is used to launch the
Charm++ program. The “+p2” command line arguement indicates that two processors are
to be used to execute the program. The “./simpleHello” command line arguement is the
executable to run. The remaining command line arguements, in this case “10”, are passed to
the Charm++ program and processed by it (through the CkArgMsg parameter in the main
chare’s constructor, see “Main::Main()” in figure 3.3). Each “hello World!” line also contains
two numbers. The first number, enclosed in square brakets (“[]”) indicates the index of the
chare array element that generated the given line of output (i.e. the value of “thisIndex”).
Each chare in a chare array has a unique index and the value of that index is contained in
the variable “thisIndex.” The second number, enclosed in parenthesis (“()”), indicates the
physical processor that executed the constructor.

1 $./charmrun +p2 ./simpleHello 10

2 Hello World! 0

3 Hello World! 1

4 Hello World! [2](0)

5 Hello World! [3](1)

6 Hello World! [4](0)

7 Hello World! [5](1)

8 Hello World! [6](0)

9 Hello World! [7](1)

10 Hello World! [8](0)

11 Hello World! [9](1)

Figure 3.5: Example output of Simple “Hello World” Chare Array Program

At the time of chare array creation, the Charm++runtime system assigns the elements
of the chare array to the processors using a round-robin mapping. Round-robin mapping
is not the only mapping scheme available in Charm++, but is the default scheme used for
any chare array where the programmer has not specified the mapping scheme explicitly. In
round-robin, the first element is mapped to the first processor, the second element is mapped
to the second processor, and so on. If there are more chare array elements than processors,
then when the final processor is reached, the runtime system begins with first processors once
again and continues through until the last, cycling through the list of processors as many
times as is required so that all of the chare array elements have been assigned to a physical
processor.

[[DMK : TODO : Add a figure to illustrate round-robin mapping ???]]
At this point, we encourage the reader to write the code for the simple hello array program

and try executing it, using the provided code listings as a guide. It should be noted that the

3.2. A SINGLE RING 47

output lines may appaer in a different order each time the program is executed, especially
as more and more cores are used. To understand why this is, first consider that there is
no particlular order being imposed on the creation of the chare array elements. It is not
necessary for the first element to be created before the second, the second before the third,
and so on. Because there is no enforced order in which the constructors are being called, there
is not enforced ordering to the various calls made to “CkPrintf().” Second, as an optimization
to I/O performance, the output generated by the various processors may be buffered by the
runtime system, causing the ordering of “CkPrint()” output to appear different to the user
than the order of the actual calls themselves. For example, processor X prints message A and
that message is buffered. Then, processor Y prints message B and then flushes its I/O buffer,
causing message B to be displayed to the user. Finally, processor X prints message C and
flushes its I/O buffer, causing messages A and C to be displayed to the user. Even though
the application printed the messages in the order A, B, and then C, the user will see the
output as B, A, and then C because of the interference of the I/O buffering mechanism. To
programmers, especially those that are new to parallel programming in general, the reordering
of output can be quite tricky, causing them to think that their program executed differently
than it actually did. We will see how including certain information in the output can be
useful to understanding the output, even if the lines of output generated by the program
occur in a different order each time the program is executed.

3.2 A Single Ring

The next example, “Single Ring,” illustrates how to create and use chare arrays. In this
program, a single chare array, “the ring,” will be created. Consecutive array elements are
considered connected along with the first and last array elements, thus creating the “ring.”

The program works as follows (refer to figure 3.6). The main chare will instruct one of
the elements, at random, to begin a ring traversal by invoking the “doSomething()” entry
method on the chosen element ((1: begin) in figure 3.6). At the same time, the total number
of ring traversals that should be completed will also be indicated. The “doSomething()” entry
method will print a message, indicating that the entry method was called and giving some
information about the specific invocation. Once the message has been printed, it will instruct
the next element in the array to do the same thing by invoking “doSomething()” on it also (the
last element will invoke “doSomething()” on the first element, creating the ring). A traversal
of the ring is complete after each element in the array has executed “doSomething().” This
process will continue until the specified number of traversals have completed ((2: begin next
traversal) in figure 3.6). Once the all of the traversals have been completed, an entry method
on the main chare will be invoked causing the program to exit ((3: end) in figure 3.6). At this
point, we could just as easily call “CkExit()” from within the body of “doSomething(),” and
so the decision to invoke an entry method on the main chare object may seem a bit arbitrary

48 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

Figure 3.6: Control flow of Single Ring example program. In this figure, there are N array
elements in the ring where index i is the element that is chosen by the main chare to begin
the ring traversals.

3.2. A SINGLE RING 49

(and unecessary at this point). However, we will expand on this example in the future, and
this decission should be more clear at that time.

Figure 3.7 contains the code for the interface (.ci) file for the single ring program. It is
similar to the previous interface file (see figure 3.2. The main difference for this example is
that the chare array class has both a constructor and an entry method. Entry methods for
chare arrays are declared exactly the same way they are declared for single chare objects.

1 mainmodule arrayRing {

2

3 mainchare Main {

4 entry Main();

5 entry void ringFinished();

6 };

7

8 array [1D] Ring {

9 entry Ring(CProxy_Main mp, int rs);

10 entry void doSomething(int elementsLeft, int tripsLeft,

11 int fromIndex, int fromPE);

12 };

13

14 }

Figure 3.7: “Single Ring” Chare Array Program: Interface file “arrayRing.ci”

Figure 3.8 contains the code for the main chare object in the single ring program. The
code here is fairly similar to the array based “Hello World!” program presented in section
3.1. The main differences are that the main chare object’s constructor initiates the work in
the chare array by sending one of the array elements a message and the way in which the
program terminates. Only one element will invoke an entry method on the main constructor,
instead of all of the elements.

As can be seen at the end of the Main::Main() constructor in figure 3.8, the main chare
creates an instance of the “Ring” chare array (lines 34-35). This causes the Charm++ run-
time system to begin creating the array elements on the remote processors and calling their
constructors, using the parameters passed into the CProxy Main::CkNew() call just as it was
described in section 3.1. The main chare’s constructor also sends a message to one of the array
elements, at random, to initiate the ring traversals (lines 37-38). The Charm++programming
model does not guarantee that messages are received in same order in which they are sent.
However, it is ensured that the constructor of any given chare will be executed before any
entry methods are invoked on that chare object. Thus, the programmer does not need to

50 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

10 class Main : public CBase_Main {

11 public:

12

13 Main(CkMigrateMessage *msg) { }

14 Main(CkArgMsg* msg) {

15

16 // Check to see if there are any command line arguements

17 int ringSize = DEFAULT_RING_SIZE;

18 int tripCount = DEFAULT_TRIP_COUNT;

19 if (msg->argc > 1) ringSize = atoi(msg->argv[1]);

20 if (msg->argc > 2) tripCount = atoi(msg->argv[2]);

21 if (ringSize <= 0 || tripCount <= 0) {

22 CkPrintf("[ERROR] :: Invalid ringSize or tripCount\n");

23 CkExit();

24 }

25 delete msg; // Done with message (so delete it)

26

27 // Display some information to the user about this run

28 CkPrintf("\"Array Ring (Single)\" Program\n");

29 CkPrintf(" ringSize = %d, tripCount = %d, #PEs() = %d\n",

30 ringSize, tripCount, CkNumPes());

31

32 // Create the chare array with arraySize elements and

33 // tell a random element to start doing something

34 CProxy_Ring ring =

35 CProxy_Ring::ckNew(thisProxy, ringSize, ringSize);

36 srand(time(NULL)); // Initialize random number generator

37 ring(rand() % ringSize)

38 .doSomething(ringSize, tripCount, -1, -1);

39 }

40

41 void ringFinished() { CkExit(); }

42 };

Figure 3.8: “Single Ring” Chare Array Program: Main chare class in the C file “arrayRing.C”

3.2. A SINGLE RING 51

perform any special synchronization in the main chare’s constructor between the creation of
the chare array (call to “CkNew”) and invoking an entry method on one of the elements (call
to “doSomething()”).

Figure 3.9 contains the code for the “Ring” chare array class. The constructor is fairly
straight forward. It simply stores the parameters it’s given into member variables for later
use. The nextI() member function is also fairly straight forward. It returns the array index
of the next array element in the ring.

The “Ring::doSomething()” function is a bit more involved. It starts by displaying some
text to the user. The text indicates which object in the ring is currently “doing work,” which
ring traversal this message belongs to (related to “tripsLeft”), and which array element told
this element to “do something.” The entry method then has to determine what to do next.
If there are elements left in this traversal of the ring (i.e. “elementsLeft >= 2”), then it
simply tells the next array element to “do something” and decrements the “elementsLeft”
counter. Otherwise, if there are no elements left in this traversal and there are more traversals
remaining, start the next traversal by reseting the “elementsLeft” counter and decrementing
the “tripsLeft” counter. Finally, if there are no elements left in this traversal and no more
traversals remaining, invoke the “ringFinished()” entry method on the the main chare object
indicating that the ring has completed all of it’s traversals. Please note, both “elementsLeft”
and “tripsLeft” are 1 based and include the current call (e.g. “elementsLeft == 1” means
this ivocation is the one remaining call in the traversal). When the “Main::ringFinished()”
entry method is called, “CkExit()” is called causing the program to terminiate.

Figure 3.10 contains an example execution of the “Simple Ring” program. Once again,
the “charmrun” command is used to launch the Charm++ program on multiple processors.
The “+p2” indicates that two processors should be used to run the program. “./arrayRing”
is the name of the Charm++ executable. The remaining command line parameters are passed
to the Charm++ program (in this case “5” and “3”, see “Main::Main()” in 3.8). The “5”
indicates that there should be five array elements in the ring. The “3” indicates that there
should be three full ring traversals before the program exits.

The output of the program in figure 3.10 should be read as follows. The values in the
brackets (“[]”) indicate the array index of the array element printing that particular output
line. The values in parenthesis (“()”) indicate the physical processor on which the array
element is located. The “tripsLeft” value indicates how many full ring traversals (including
the current traversal) still remain before the program exits. The “from” portion of the line
indicates which array element sent the message to cause this array element to print this
line. For the element that is invoked first, starting the initial traversal, the values in the
“from” portion of the line are “-1” indicating that the main chare object actually sent
the message to start the first traversal. See the code figures to understand the details on
what the code is doing exactly.

52 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

45 class Ring : public CBase_Ring {

46 private:

47 CProxy_Main mainProxy; // Proxy object for the main chare

48 int ringSize; // Number of elements in the ring

49

50 public:

51 Ring(CkMigrateMessage *msg) { }

52 Ring(CProxy_Main mp, int rs) {

53 mainProxy = mp;

54 ringSize = rs;

55 }

56

57 inline int nextI() { return ((thisIndex + 1) % ringSize); }

58

59 void doSomething(int elementsLeft, int tripsLeft,

60 int fromIndex, int fromPE) {

61

62 // Do something (display some text for the user)

63 printf("Ring%d: tripsLeft = %d, from %d\n",

64 thisIndex, CkMyPe(), tripsLeft, fromIndex, fromPE);

65

66 // Send message to continue traversals or notify main

67 if (elementsLeft > 1) { // elements left in traversal

68 thisProxy(nextI()).doSomething(elementsLeft - 1,

69 tripsLeft, thisIndex, CkMyPe());

70 } else if (tripsLeft > 1) { // start next traversal

71 thisProxy(nextI()).doSomething(ringSize,

72 tripsLeft - 1, thisIndex, CkMyPe());

73 } else { // otherwise, all traversals finished

74 mainProxy.ringFinished();

75 }

76 }

77 };

Figure 3.9: “Single Ring” Chare Array Program: Ring chare class in the C file “arrayRing.C”

3.2. A SINGLE RING 53

3 $./charmrun +p2 ./arrayRing 5 3

4 "Array Ring (Single)" Program

5 ringSize = 5, tripCount = 3, #PEs() = 2

6 Ring0: tripsLeft = 3, from -1

7 Ring1: tripsLeft = 3, from 0

8 Ring[2](0): tripsLeft = 3, from 1

9 Ring[3](1): tripsLeft = 3, from [2](0)

10 Ring[4](0): tripsLeft = 3, from [3](1)

11 Ring0: tripsLeft = 2, from [4](0)

12 Ring1: tripsLeft = 2, from 0

13 Ring[2](0): tripsLeft = 2, from 1

14 Ring[3](1): tripsLeft = 2, from [2](0)

15 Ring[4](0): tripsLeft = 2, from [3](1)

16 Ring0: tripsLeft = 1, from [4](0)

17 Ring1: tripsLeft = 1, from 0

18 Ring[2](0): tripsLeft = 1, from 1

19 Ring[3](1): tripsLeft = 1, from [2](0)

20 Ring[4](0): tripsLeft = 1, from [3](1)

Figure 3.10: Example output of “Single Ring” Chare Array Program

54 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

3.3 Multiple Rings

In this next example, we will be exploring a slightly more complicated version of the “Single
Ring” example program from section 3.2. This example will show how a program can have
multiple sets of chare objects that are performing parallel computations that are largely
independent of one another. To keep the example simple we will simply duplicate the ring
from the “Single Ring” example. However, there is nothing stoping the programming from
having completely different computations going on in each set of chare objects.

The major differences between this “Multiple Ring” and the previous “Single Ring” ex-
amples are as follows. First, this example has multiple rings, each represented by a chare
array just as before. Second, as messages are moving around each ring, they will skip a
random number of array elements instead of simplying moving from one element to the next
consecutive element. As a result, even though each ring will be performing the same compu-
tation (executing the same code), the example will show, in a very simple sense, that each
computation is independent from the others. Third, to demonstrate modularity, the modules
(interface) files and source code files for the chare classes will be divieded into multiple files.

Figure 3.11 illustrates the program flow of the “Multiple Ring” example program. It is
very similar to the “Single Ring” program. The basic difference in the control flow is that
the main chare will create several rings, instead of just one. Since there are multiple rings,
the program will only exit after all of the rings have completed all of their traversals.

Figure 3.12 contains the interface file for the “Main” chare class. This interface file is
fairly similar to previous interface files that have been presented so far with one notable
exception, the “extern” line. The extern line indicates that there is yet another module (in
another interface file) called “multiRing Ring” that should be included by this module. The
contents of the “multiRing Ring” module will be declared in a different interface file (see
figure 3.13). Both chare classes could have easily been declared in a single interface file, we
have done this simply to provide an example of multiple interface files, since modularity is
useful as applications grow more complex and/or when pieces of an application are developled
independently of one another.

Figure 3.14 contains some of the source code for the Main chare class. Some of the code,
parsing the command line, displaying usage information to the user, and so on has been left
out for brevity. The user can indicate on the command line how many rings (chare arrays)
should be created (numRings), the number of elements in each ring (ringSize[i]), and the
number of traversals around each ring that should be completed (tripCount[i]). Once the
command line has been processed, a header is printed for the user displaying some information
about the details of the program execution. Finally, each ring is created using “CkNew()”
and the first traversal of each ring is started by calling the “doSomething()” entry method
on a random element of the ring.

Figure 3.15 contains the code for the Ring chare class. Once again, this code is basically
the same as it was in the “Single Ring” example (see section 3.2). The main difference is the

3.3. MULTIPLE RINGS 55

Figure 3.11: Control flow of Multiple Ring example program. Refer to figure 3.6 in section
3.2.

56 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

1 mainmodule multiRing_Main {

2

3 // Declare chare objects/collections for the Main module

4 mainchare Main {

5 entry Main();

6 entry void ringFinished();

7 };

8

9 // Include the Ring object’s module

10 extern module multiRing_Ring;

11

12 }

Figure 3.12: “Multi-Ring” Chare Array Program: Main chare class interface file “multiR-
ing Main.ci”

1 module multiRing_Ring {

2

3 // Include the Main object’s module (main proxy reference)

4 extern module multiRing_Main;

5

6 // Declare chare objects/collections for the Ring module

7 array [1D] Ring {

8 entry Ring(CProxy_Main mp, int rs, int rID);

9 entry void doSomething(int elementsLeft, int tripsLeft,

10 int fromIndex, int fromPE);

11 };

12

13 }

Figure 3.13: “Multi-Ring” Chare Array Program: Ring chare class interface file “multiR-
ing Ring.ci”

3.3. MULTIPLE RINGS 57

8 class Main : public CBase_Main {

9 private:

10 int numRings;

11

12 public:

13 Main(CkMigrateMessage *msg) { }

14 Main(CkArgMsg* msg) {

15 int *ringSize = NULL, *tripCount = NULL;

16 processCommandLine(msg, &ringSize, &tripCount);

17

18 CkPrintf("\"Array Ring (Multi)\" Program\n");

19 CkPrintf(" numRings = %d, #Pes() = %d\n",

20 numRings, CkNumPes());

21 for (int i = 0; i < numRings; i++)

22 CkPrintf(" Ring_%d : ringSize = %d, tripCount = %d\n",

23 i, ringSize[i], tripCount[i]);

24

25 // Create the rings

26 for (int i = 0; i < numRings; i++) {

27 CProxy_Ring ring = CProxy_Ring::ckNew(

28 thisProxy, ringSize[i], i, ringSize[i]);

29 ring(rand() % ringSize[i]).doSomething(

30 ringSize[i], tripCount[i], -1, -1);

31 }

32 }

33

34 void processCommandLine(CkArgMsg* msg, int** rs, int** tc);

35 void printUsage(const char* const errStr, char* appName);

36

37 void ringFinished() {

38 static int finishedCount = 0;

39 if ((++finishedCount) >= numRings) { CkExit(); }

40 }

41 };

42

Figure 3.14: “Multi-Ring” Chare Array Program: Main chare class in the C file “multiR-
ing Main.C”

58 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

introduction of the skipAmount variable. In the “Single Ring” example, when an element
received a message, it simply sent a message to the next consecutive element in the ring.
However, in this example, upon receiving a message, the array element will send a message
to another random element in the ring furthur along in the ring traversal. That is, if half of
the ring has been traversed already, the current array element will send the next message to
one of the element in the other half of the array at random.

Another strength of the Charm++program model is that various portions of the application
can be decomposed independently of one another. That is to say, the chare objects in the
application are spread across the individual processors, not tied to specific processors. If, for
example, an application were to use a parallel library, the application developers do not have
to concern themselves with how the library works internally or which processors the library
will use. Instead, they simply write their application specific code, decomposing it as they
see fit, and make calls in to the parallel library. The mapping of the objects to processes (and
load balancing) is left up to the runtime system freeing the programmers of this responsibility.
In this particular example, “Multiple Rings,” the main chare object can instantiate as many
rings of any size that it wishes to instantiate without worrying about how they interact with
one another. The runtime system is free to migrate these chare array elements between
processors to balance the overall load and thus optimize the overall program performance.

Figure 3.16 contains the output from a single execution of this example program. One may
find the ordering of the output to be quite confusing. We have already addressed why lines
in the output of Charm++applications may be in a different order than the actual exection
of the code itself for the reasons discussed at the end of section 3.1. As the programs get
more complex and have more and as more asynchronous events are going on, the ordering of
the output is more likely to get mixed up compared to the order in which the print calls are
actually made.

Figure 3.17 contains the exact same output, though the ordering of the lines has been
rearranged in to an order that one might expect. This is where the additional “from” infor-
mation on each line is useful. The output of each ring (“Ring 0,” “Ring 1,” and so on) is
grouped together. In this example, the rings do not communicate with one another so there
is no particular ordering or dependency between the output lines for different rings. Within
each ring’s output, each line indicates which element is outputting the line (line starts with
“Ring α[β](δ)” where α identifies which ring the output line came from, γ identifies which
array element in the ring displayed the line, and δ indicates which processor the array ele-
ment is located on). The “from” portion of the line follows the same convention (with the
same ring being assumed). The addition of this “from” information to each lines helps the
user understand what is going on in the execution a bit easier than if it wasn’t there (how
the messages were actually passed between elements of the various rings). The “tripsLeft”
counter indicates which traversal of the ring this is (i.e. once the message makes it all the
way around the ring, the “tripsLeft” counter is decremented).

3.3. MULTIPLE RINGS 59

5 class Ring : public CBase_Ring {

6 private:

7 CProxy_Main mainProxy; // Proxy object for the main chare

8 int ringSize; // Number of elements in the ring

9 int ringID; // ID value for this ring

10

11 public:

12 Ring(CkMigrateMessage *msg) { }

13 Ring(CProxy_Main mp, int rs, int rID)

14 : mainProxy(mp), ringSize(rs), ringID(rID) { }

15

16 int nextI(int s) { return ((thisIndex+s) % ringSize); }

17

18 void doSomething(int elementsLeft, int tripsLeft,

19 int fromIndex, int fromPE) {

20

21 // Do something (display some text for the user)

22 printf("Ring_%d%d: tripsLeft = %d, from %d\n",

23 ringID, thisIndex, CkMyPe(), tripsLeft, fromIndex,

24 fromPE);

25

26 // Send message to continue traversals or notify main

27 if (elementsLeft > 1) { // elements left in traversal

28 int skipAmount = (rand() % elementsLeft) + 1;

29 thisProxy(nextI(skipAmount)).doSomething(

30 elementsLeft - skipAmount, tripsLeft, thisIndex,

31 CkMyPe());

32 } else if (tripsLeft > 1) {

33 thisProxy(nextI(1)).doSomething(

34 ringSize, tripsLeft - 1, thisIndex, CkMyPe());

35 } else {

36 mainProxy.ringFinished();

37 } } };

Figure 3.15: “Multi-Ring” Chare Array Program: Ring chare class in the C file “multiR-
ing Ring.C”

60 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

27 $./charmrun +p3 ./multiRing 3 5 3 10 1 8 2

28 Ring_01: tripsLeft = 3, from -1

29 Ring_2[7](1): tripsLeft = 2, from -1

30 Ring_1[7](1): tripsLeft = 1, from 2

31 Ring_01: tripsLeft = 2, from 0

32 Ring_0[4](1): tripsLeft = 2, from 1

33 Ring_01: tripsLeft = 2, from [4](1)

34 Ring_2[7](1): tripsLeft = 1, from [6](0)

35 Ring_21: tripsLeft = 1, from [7](1)

36 Ring_2[4](1): tripsLeft = 1, from [3](0)

37 "Array Ring (Multi)" Program

38 numRings = 3, #Pes() = 3

39 Ring_0 : ringSize = 5, tripCount = 3

40 Ring_1 : ringSize = 10, tripCount = 1

41 Ring_2 : ringSize = 8, tripCount = 2

42 Ring_00: tripsLeft = 3, from 1

43 Ring_2[6](0): tripsLeft = 2, from [7](1)

44 Ring_00: tripsLeft = 1, from 2

45 Ring_2[3](0): tripsLeft = 1, from 1

46 Ring_2[6](0): tripsLeft = 1, from [4](1)

47 Ring_1[8](2): tripsLeft = 1, from -1

48 Ring_12: tripsLeft = 1, from [8](2)

49 Ring_02: tripsLeft = 1, from 1

50 Ring_02: tripsLeft = 1, from 0

Figure 3.16: Example output of “Multi-Ring” Chare Array Program

3.3. MULTIPLE RINGS 61

55 $./charmrun +p3 ./multiRing 3 5 3 10 1 8 2

56 "Array Ring (Multi)" Program

57 numRings = 3, #Pes() = 3

58 Ring_0 : ringSize = 5, tripCount = 3

59 Ring_1 : ringSize = 10, tripCount = 1

60 Ring_2 : ringSize = 8, tripCount = 2

61

62 Ring_01: tripsLeft = 3, from -1

63 Ring_00: tripsLeft = 3, from 1

64 Ring_01: tripsLeft = 2, from 0

65 Ring_0[4](1): tripsLeft = 2, from 1

66 Ring_01: tripsLeft = 2, from [4](1)

67 Ring_02: tripsLeft = 1, from 1

68 Ring_00: tripsLeft = 1, from 2

69 Ring_02: tripsLeft = 1, from 0

70

71 Ring_1[8](2): tripsLeft = 1, from -1

72 Ring_12: tripsLeft = 1, from [8](2)

73 Ring_1[7](1): tripsLeft = 1, from 2

74

75 Ring_2[7](1): tripsLeft = 2, from -1

76 Ring_2[6](0): tripsLeft = 2, from [7](1)

77 Ring_2[7](1): tripsLeft = 1, from [6](0)

78 Ring_21: tripsLeft = 1, from [7](1)

79 Ring_2[3](0): tripsLeft = 1, from 1

80 Ring_2[4](1): tripsLeft = 1, from [3](0)

81 Ring_2[6](0): tripsLeft = 1, from [4](1)

Figure 3.17: Modified example output of “Multi-Ring” Chare Array Program

62 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

3.4 Reductions

This section will cover the basics of performing simple reductions on an array of chare objects
in the Charm++ programming model. Before we discuss how to perform a reduction, we first
start by describing what a reduction is.

As the name implies, a reduction is an operation that reduces a large set of values into
a smaller set of values (typically, many values reduced to only a single value) according to a
specified operation. For example, consider an array of integers and imagine that we want to
calculate the sum of the all integers in that array. We would repeatedly apply the operation
to the values within the array, along with any intermediate values that we have created during
the calculation, until we processed all of input and arrived at a single final value. One of the
other features of a reduction is that the operation being applied has to be both communative1

and associative2. This allows the operation to be applied to the individual values within the
original set in any order.

The function reduceIntArray Addition 1 in figure 3.18 is an example of the typlical way
in which the sum of an array of integers is calculated in a serial program (i.e. a reduction
applying the ’add’ operation is typically performed). The function body is straight forward.
An intermediate value, r, is created and initialized to the identity value for addition.3 The
loop then iterates over each value in the array, adding the value of the array element to the
intermediate value. Once all values have been added to r, the value of r is returned as the
sum of all the values in the input array a.

Because the operation being used in this reduction (’add’) is both communative and
associative, we can modify the code of reduceIntArray Addition 1 to perform the operations
on the values in a different order. In particular, we can divide the array into two equal halves
and calculate the sum of each of those halves (refer to reduceIntArray Addition 2 in figure
3.18). In a sequential program, doing this doesn’t make much sense, but in the context of
creating parallel applications this begins to make sense. The for-i and for-j loops are data
independent of one another and thus can be performed in parallel. The results of the two
different loops still need to performed in order to get the final result, using the same operation
applied to the initial values themselves. In reduceIntArray Addition 2, we have only divided
the work into two equal halves, however, the reduction computation could be broken down
into even smaller parts.

Chare arrays have a natural associate with reductions. Chare arrays are a set of chare

1The operation ⊗ is said to be communative if A ⊗ B = B ⊗ A. Multiplication is an example of a
communative operation (e.g. 2 ∗ 3 = 3 ∗ 2). Division is an example of an operation which is not communative
(e.g. 2÷ 1 6= 1÷ 2).

2The operation ⊕ is said to be associative if (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C). Addition is an example of an
assocative operation (e.g. 2 + 3 = 3 + 2). Subtraction is an example of an operation which is not associative
(e.g. (5− 3)− 2 6= 5− (3− 2)).

3An identity value, I, of an operation, ⊗, is a value such that a⊗ I = a. For example, zero is the identity
value of addition (a + 0 = a), and one is the identity value of multiplication (a ∗ 1 = a).

3.4. REDUCTIONS 63

// Perform a reduction on an interger array using the ’add’ operation

// r = a[0] + a[1] + a[2] + a[3] + a[4] + ... + a[aLen-1]

int reduceIntArray_Addition_1(int *a, int aLen) {

int r = 0;

for (int i = 0; i < aLen; i++) {

r = r + a[i];

}

return r;

}

// Perform a reduction on an integer array using the ’add’ operation

// r = (a[0] + ... + a[aLen/2]) + (a[aLen/2+1] + ... a[aLen-1])

int reduceIntArray_Addition_2(int *a, int aLen) {

// For-i loop : Add the values in the first half of intArray

int r_A = 0;

for (int i = 0; i < aLen / 2; i++) {

r_A = r_A + a[i];

}

// For-j loop : Add the values in the second half of intArray

int r_B = 0;

for (int j = (aLen / 2) + 1; j < aLen; j++) {

r_B = r_B + a[i];

}

// For the final result, add the results of for-i and for-j

return = r_A + r_B;

}

Figure 3.18: Two versions of a function that performs a serial reduction on an array of
integers, applying the ’add’ operation. [DMK - Should add a figure showing ’reduction trees’
graphically?]

64 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

objects where, at least in some cases, it is useful to calculate some statistic (e.g. an average), a
maximum error in data distributed across the chares (e.g. applying a maximum-like function),
and so on. In section 3.5, we will see one such application, a 5-point stencil applications,
which uses a reduction to calculate the maximum value change between timesteps in order
to test for convergence and thus completion. First, let us look at how reductions can be
performed on chare arrays.

3.4.1 Basic Reduction

This simple example will illustrate how to perform a reduction over a chare array in Charm++.
First, the main chare object will create a chare array as we have already demonstrated. Once
created, all of the elements in the chare array will contribute an integer value (in this case,
their own index in the chare array). The operation that will be applied is addition (called
sum int in the code). Finally, when the reduction has completed, the main chare object will
be notified of the result via a callback, which it will display just before exiting the program.

Figure 3.19 contains both the interface and header files for the main chare object. This
is a fairly straight forward main chare object similar to the previous main chare objects that
have been presented in previous examples. Figure 3.20 contains the source code file. Similar
to previous example’s main chare objects, the main chare’s constructor starts by processing
the command line, displaying some information for the user, and creating a chare array. The
difference with this example is that once the chare array has been created, but before any
entry methods are invoked on any of it’s elements (i.e. the broadcast to “doWork()”), the
main chare object registers one of it’s entry methods as a reduction client for the array.
This is done using “CkCallback.” A callback object identifies an action to take (call an
entry method, call a member function, broadcast to a chare array, do nothing, etc.) once
the runtime has completed a specified task for the application. In this case, the main chare
object’s “reductionCallback” entry method is specified as the target for the callback, and the
callback is registered with the array as the callback to activate whenever a reduction on the
“elems” chare array completes. In other words, once all of the elements of the “elems” chare
array have called “contribute,” the runtime system will apply the specified reduction function
(e.g. “sum int”) and pass the value back to the program via the target of the callback object
(e.g. the main chare object’s “reductionCallback” entry method). Since this example is only
meant to illustrate how one goes about using a single reduction in a Charm++application,
the “reductionCallback” function simply prints the result of the reduction and exits.

There is a class being used in the code in figure 3.20 called CkIndex_Main. This class is
generated by the tools provided by Charm++and used to uniquely identify the various en-
try methods of the associated class (Main, in this case). There are two important points to
make here. First, calling an entry method on a CkIndex_XYZ class simply returns a unique
identifier for the associated entry method in the class XYZ. It does not trigger the execu-
tion of the entry method. Second, because the code of the entry method is not executed,

3.4. REDUCTIONS 65

1 mainmodule basicReduct_Main {

2

3 mainchare Main {

4 entry Main(CkArgMsg*);

5 entry [reductiontarget] void reductionCallback(int data);

6 };

7

8 extern module basicReduct_Elem;

9 }

1 #ifndef __BASIC_REDUCT_MAIN_H__

2 #define __BASIC_REDUCT_MAIN_H__

3

4 #include "basicReduct_Main.decl.h"

5

6 class Main : public CBase_Main {

7 public:

8 Main(CkMigrateMessage* msg);

9 Main(CkArgMsg* msg);

10 void reductionCallback(int data);

11 };

12

13 #endif // __BASIC_REDUCT_MAIN_H__

Figure 3.19: The main chare class in the “Basic Reduction” program (interface and header
files: “basicReduct Main.ci” and “basicReduct Main.h”)

66 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

5 #include "basicReduct_Main.h"

6 #include "basicReduct_Elem.h"

7

8 #define DEFAULT_NUM_ELEMS (10)

9

10 Main::Main(CkMigrateMessage* msg) { }

11 Main::Main(CkArgMsg* msg) {

12

13 // Parse the command-line options

14 int numElems = DEFAULT_NUM_ELEMS;

15 if (msg->argc > 1) { numElems = atoi(msg->argv[1]); }

16

17 // Display a header for the user

18 CkPrintf("\"Basic Reduction\" Program\n");

19 CkPrintf(" Number of Elements = %d\n", numElems);

20

21 // Create the array of Elems

22 CProxy_Elem elems = CProxy_Elem::ckNew(numElems);

23 CkCallback *cb = new CkCallback(

24 CkReductionTarget(Main, reductionCallback), thisProxy);

25 elems.ckSetReductionClient(cb);

26

27 // Start the reduction by having everyone contribute

28 elems.doWork();

29 }

30

31 void Main::reductionCallback(int data) {

32 CkPrintf("Reduction result: %d\n", data);

33 CkExit();

34 }

35

36 #include "basicReduct_Main.def.h"

Figure 3.20: “Basic Reduction” Chare Array Program: Main chare class’ source file: “basi-
cReduct Main.C”

3.5. MULTI-DIMENSIONAL CHARE ARRAYS 67

the actual values of the parameters are never evaluated, and thus do not matter. The pa-
rameters are only used to identify which version of the function should be called. Just like
member functions, entry methods can share the same name if their parameter lists are dif-
ferent. This second point is illustrated in figure 3.20 since the pointer value being passed to
CkIndex_Main::reductionCallback(NULL). The parameter can be NULL since only the type
of the parameter is important. The unique identifier is then passed to the constructor of the
CkCallback class so that the callback object can identify the exact entry method that is to
be called when the callback object is triggered by the runtime system.

Figure 3.21 contains all of the files related to the “Elem” chare array class (header,
interface, and source files). For this example, the “Elem” chare array elements are very
simple. Each element only perform a single task: when their “doWork()” entry method is
instantiated, it contributes a single value to the reduction. The value that each chare array
element contribues is its own index (“thisIndex”) in the chare array. For an array with N
elements, the first element will contribute a 0, the second element will contribute a 1, and so
on through the last element which will contribute a value of N − 1. For this reduction, each
contribution is an integer and all of the integers will be summed together. For example, if
N = 4 then the result will be the indices of the array elements added together: 0+1+2+3 = 6.
In general, if N = x then the result will be (N ∗ (N − 1))/2.

3.4.2 Multiple Reductions

[DMK : Multiple/more complex reduction example to be created.]

3.5 Multi-dimensional Chare arrays

Chare array can also be multidimensional (from 1D through 6D). Creating and using a mul-
tidmensional chare array is basically the same as using a single dimensional array. The main
difference is how the “thisIndex” variable is used to index into the multidemensional array.
Instead of having only as single value, “thisIndex” has between two and six subcomponents
((X,Y), (X,Y,Z), and so on). A simple 2D 5-point stencil application will be used to illustrate
programming with multidimensional chare arrays.

Description of 5-Point Stencil (Jacobi)

The calculation that the 5-point stencil application, also known as a jacobi, uses is fairly
straight forward. There is a grid (or matrix) of values. In this example, the grid is 2D.
These values typically represent an amount of something at each point in the grid (e.g.
heat/temperature). The basic idea is to simulate how these values change over time according
to a specified calculation. Time is broken down into decrete timesteps. During each timestep,
the value of every element in the grid is updated according to some equation combining one

68 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

1 module basicReduct_Elem {

2

3 array [1D] Elem {

4 entry Elem();

5 entry void doWork();

6 };

7 }

1 #ifndef __BASIC_REDUCT_ELEM_H__

2 #define __BASIC_REDUCT_ELEM_H__

3

4 #include "basicReduct_Elem.decl.h"

5

6 class Elem : public CBase_Elem {

7 public:

8 Elem(CkMigrateMessage *msg);

9 Elem();

10 void doWork();

11 };

12

13 #endif // __BASIC_REDUCT_ELEM_H__

5 #include "basicReduct_Elem.h"

6

7 Elem::Elem(CkMigrateMessage *msg) { }

8 Elem::Elem() { }

9

10 void Elem::doWork() {

11 int value = thisIndex;

12 contribute(sizeof(int), &value, CkReduction::sum_int);

13 }

Figure 3.21: “Basic Reduction” Chare Array Program: Elem chare class’ interface and header
files: “basicReduct Elem.ci” and “basicReduct Elem.h”.

3.5. MULTI-DIMENSIONAL CHARE ARRAYS 69

or more values from the previous timestep, typically some function of the values in the
surounding elements. For the sake of this example, we will use the average of the current
element and the four neighboring elements’ values from the previous timestep (hence the
name 5-point stencil).

It is also common to have one or move points in the grid (or borders) held at some fixed
value. For example, one could hold one or more elements in the center of the 2D grid at a
relatively low fixed value to simulate a cold spot in a temperature simulation. If all of the
fixed values do not change in time then eventually the overall simulation will converge to
some final state. That is, the magnitude of the largest value change for any of the elements
will reduce as time goes on and a stable state will be reached. Once all of the non-fixed values
change by an amount less than or equal to a specified error tolerance amount, the simulation
is considered to have converged and will exit.

Parallizing 5-Point Stencil

Parallelizing the 5-point stencil application is fairly straight forward. Updating the value of
each element during each timestep is based on a fixed computation (average in our case). To
parallelize this calculation, we can simply divide the overall 2D grid in both dimensions to
create a collection of equally sized tiles. Each tile will contain an equal number of elements
from the original grid. We will then map each of the tiles to one of the chare array elements
in a 2D chare array, as illustrated by figure 3.22. On the left is the overall grid of values
(the data points in the simulation). On the right is the 2D chare array. This two images are
overlapped in the center to show how each 2D chare array element will contain a portion of
the overall grid (i.e. one tile per array element).

Figure 3.22: Decomposition of 2D jacobi grid into tiles. [DMK - TODO/FIXME - Update
image text to match the text in this example.]

However, there is a slight complication. Remember that the calculation to update each
element’s value requires the values of the element’s four neighbors. This means that the
border elements in each tile will need values from the neighboring tile to complete the average

70 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

calculation (refer to figure 3.23). Each chare object will have 2D array of elements that
represent the its local data. This local data array will have two more elements than required
in each dimension. That is, if each tile contains [A x A] elements, then the local data array
will be [(A+2) x (A+2)] in size. This allows for a one element border around each tile
which will hold ghost information from each of the four neighboring tiles4. The term ghost
data refers to the border data passed by each tile that will be used as input to the element
calculations for the neighboring tile’s border element’s calculations. “Ghost” is used because
once the data arrives, it can only be read (i.e. seen), but since the elements don’t actually
reside there they cannot be written (i.e. touched).

Before a tile can perform its local element calculations, it must first receive neighboring
ghost messages and transmit its own ghost data to its neighbors. Each tile sends and receives
four ghost messages, one for each neighbor (tiles on the edges exchange ghost data with tiles
on the opposite edge). The incoming ghost data is copied into the extra border area in the
data array (see figure 3.23). The the actual tile data is in the center [A x A] area of the
[(A+2) x (A+2)] data array. Therefor, the ghost data is copied from the edge of the tile data
of one tile object to the associated border elements in the data array of the other tile object’s
data array. Note that this leaves the four corner elements of the data array unused.

Another issue to consider in parallelizing the 5-point stencil application is determing when
the simulation is complete. That is, detecting that no non-fixed element changed by more
that the error tolerance. To put it another way, that maximum value change seen on any
tile was less than a specified error tolerance. Parallelizing this process is a straight forward
application of a reduction. Remember that a reduction can preform any commutative and
associative mathematical operation. In this case, the mathematical operation of maximum
has both of these mathematical properties and thus can be used in a reduction to calculate
the global maximum value change seen across all the tiles for any given timestep.

Once each tile object has sent its ghost data and received ghost data from all four of its
neighbors, the object can proceed to update each of the elements local to the tile object. As
it performs the calculation for each element, it needs to keep track of the maximum value
change that was seen for the current timestep. Once all of the elements have been updated,
the tile object will contribute its maximum value change to a reduction across the entire
chare array. Once all of the tile objects in the overall grid have contributed, the result of the
reduction will be sent to the main chare object. Based on the global maximum value change,
the main chare object will either start another timestep (if the maximum value change is
greater than the error tolerance) or cause the application to exit (if the maximum value
change is less than or equal to the error tolerance).

4For the 5-point stencil example, tiles that are located on the edge of the overall grid will exchange ghost
data with tiles on the opposite edge of the grid. As a result, all tile objects will both transmit and recieve
four ghost messages, even if they are on the edge of the 2D chare array.

3.5. MULTI-DIMENSIONAL CHARE ARRAYS 71

Figure 3.23: Communication pattern of tiles in 2D jacobi program. [DMK - TODO/FIXME
- Update the image text to match the text in this example.]

72 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

Code for Parallel 5-Point Stencil

Figure 3.24: Logical flow of 2D 5-point stencil execution from the point of view of a single
tile object (tile[x,y]). [DMK - TODO/FIXME - Update image text to match the text in this
example.]

Figure 3.24 show the logical flow of the 5-point stencil application for the point of view
of a single chare array element. As with all Charm++applications, the application begins by
calling the main chare object’s constructor. For reference, figure 3.25 contains the relavant
portions of the main chare object’s interface and header files.

The source code for the main chare class is located in figure 3.26. The constructor starts
by processing the command-line parameters. Once that is complete, it displays a header to
the user containing information about the run such as the size of each tile, number of tiles,
and so on. The constructor then creates the grid of elements by creating the 2D array of tile
objects. The “Main::reductionCallback()” function is set as the reduction client for the chare
array and will be called when all of the tile objects contribute to the maximum value change
reduction (more about this function later). Finally, the constructor begins the first timestep
of the simulation by broadcasting a message to all of the tiles’ “Tile::startStep” function.

A broadcast to the “Tile::startStep” function triggers the beginning of a timestep. When
invocated, this function sends ghost messages to each of its four neighbors. At the end of
the function, there is a call to “Tile::countEvent”; this function call will be discussed shortly.
The code for the “Tile::startStep” function is located in figure 3.27.

As a result of all the tiles sending ghost data to each of their neighbors, each tile will
also recieve four ghost messages, one from each neighbor. There are four functions that take

3.5. MULTI-DIMENSIONAL CHARE ARRAYS 73

1 mainmodule main {

2

3 readonly float targetDiff;

4 readonly int gridWidth;

5 readonly int gridHeight;

6 readonly int tileWidth;

7 readonly int tileHeight;

8

9 mainchare Main {

10 entry Main(CkArgMsg*);

11 entry [reductiontarget] void reductionCallback(float maxStepDiff);

12 };

13

14 extern module tile;

15 }

14 class Main : public CBase_Main {

15 private:

16 CProxy_Tile grid;

17 void processCommandLine(const CkArgMsg * const msg);

18 void displayUsage(const CkArgMsg * const msg);

19 void displayHeader();

20

21 public:

22 Main(CkMigrateMessage* msg);

23 Main(CkArgMsg* msg);

24 void reductionCallback(float maxStepDiff);

25 };

Figure 3.25: The interface and header files for the main chare object in the 2D jacobi ap-
plication. The interface file also include five read-only variables used by the various chare
object.

74 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

18 Main::Main(CkArgMsg* msg) {

19 processCommandLine(msg);

20 displayHeader();

21 delete msg;

22

23 // Create the grid tiles and set the reduction client

24 grid = CProxy_Tile::ckNew(gridWidth, gridHeight);

25 CkCallback* cb = new CkCallback(

26 CkReductionTarget(Main, reductionCallback), thisProxy);

27 grid.ckSetReductionClient(cb);

28

29 // Start the first step

30 grid.startStep();

31 }

Figure 3.26: The main chare object’s constructor (entry-point of application).

care of receiving the incoming ghost messages and copying the incoming ghost data into the
associated border elements in the data array (remember figure 3.23). Once the incoming
ghost data has been copied, each of these functions call the “Tile::countEvent” just like
“Tile::startStep” did.

The Tile::countEvent() function, shown in figure 3.29, simply increments a counter and
when that counter reaches a certain value (five), it resets the counter and makes a call to
Tile::doCalc() which does the actual computation on the elements. This is done to address
two issues. First, obviously, the local computation for a tile cannot proceed until all of the
ghost messages destined for that tile have arrived since the computation requires the ghost
data as input. In essence, these four events must occur before the calculations on the tile’s
elements can begin. Second, before the values of the elements local to this tile can be updated,
the values as they were at the start of the timestep must be transmitted to the neighboring
tiles before they are modified during this timestep. Otherwise, the neighboring tiles may
receive values from the current timestep instead of from the result of the previous timestep.
This event must also occur before the calculation on this tile can begin. Note that, from
the perspective of a single tile, it is possible for the four incoming ghost messages to arrive
before the “startStep” messages arrive since there is no guarantee of message ordering in
Charm++. That is, the four neighbors could all receive their “startStep” invocations and, in
turn, invoke all of their neighbor’s receive functions before this tile’s “startStep” invocation
occurs. Because of this, it is important to make sure that all five events occur before a tile
proceeds with its own local computation.

3.5. MULTI-DIMENSIONAL CHARE ARRAYS 75

38 void Tile::startStep() {

39 register const int thisX = thisIndex.x;

40 register const int thisY = thisIndex.y;

41

42 // Send to the north (target tile receives from the south)

43 float* northGhost = tileData + NORTH_OFFSET + TILE_Y_STEP;

44 thisProxy(thisX, thisY > 0 ? thisY - 1 : gridHeight - 1)

45 .recvSouthGhost(northGhost, tileWidth);

46

47 // Send to the south (target tile recieves from the north)

48 float* southData = tileData + SOUTH_OFFSET - TILE_Y_STEP;

49 thisProxy(thisX, thisY < gridHeight - 1 ? thisY + 1 : 0)

50 .recvNorthGhost(southData, tileWidth);

51

52 // Send to the west (target tile recieves from the east)

53 for (int i = 0; i < tileHeight; i++)

54 scratchData[i] =

55 tileData[WEST_OFFSET + TILE_X_STEP + (TILE_Y_STEP * i)];

56 thisProxy(thisX > 0 ? thisX - 1 : gridWidth - 1, thisY)

57 .recvEastGhost(scratchData, tileHeight);

58

59 // Send to the east (target tile recieves from the west)

60 for (int i = 0; i < tileHeight; i++)

61 scratchData[i] =

62 tileData[EAST_OFFSET - TILE_X_STEP + (TILE_Y_STEP * i)];

63 thisProxy(thisX < gridWidth - 1 ? thisX + 1 : 0, thisY)

64 .recvWestGhost(scratchData, tileHeight);

65

66 countEvent();

67 }

Figure 3.27: The Tile::startStep() function in “tile.C”.

76 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

70 void Tile::recvNorthGhost(float* ghostData, int dataLen) {

71 memcpy(tileData + NORTH_OFFSET, ghostData,

72 dataLen * sizeof(float));

73 countEvent();

74 }

75

76 void Tile::recvSouthGhost(float* ghostData, int dataLen) {

77 memcpy(tileData + SOUTH_OFFSET, ghostData,

78 dataLen * sizeof(float));

79 countEvent();

80 }

81

82 void Tile::recvWestGhost(float* ghostData, int dataLen) {

83 for (int i = 0; i < tileHeight; i++) {

84 tileData[WEST_OFFSET + (TILE_Y_STEP * i)] = ghostData[i];

85 }

86 countEvent();

87 }

88

89 void Tile::recvEastGhost(float* ghostData, int dataLen) {

90 for (int i = 0; i < tileHeight; i++) {

91 tileData[EAST_OFFSET + (TILE_Y_STEP * i)] = ghostData[i];

92 }

93 countEvent();

94 }

Figure 3.28: Entry methods that receive ghost data in the Tile chare class in “tile.C”.

97 void Tile::countEvent() {

98 if ((++eventCounter) >= 5) {

99 eventCounter = 0;

100 doCalc();

101 }

102 }

Figure 3.29: The Tile::countEvent() member function (not an entry method) in “tile.C”.

3.5. MULTI-DIMENSIONAL CHARE ARRAYS 77

Once the counter in the “Tile::countEvent” function reaches five, i.e. all of the events
have occured so the tile can proceed with the local computation, “Tile::countEvent” makes
a call to “Tile::doCalc.” Notice that neither “Tile::countEvent” or “Tile::doCalc” are entry
methods. Once again, entry methods are just special member functions that can be invoked
by other chare objects, or in other words, are the reception points for messages. There is
nothing stopping a chare class from having any combination of entry methods and standard
member functions.

The “Tile::doCalc” function, which is listed in figure 3.30, does the work of actually
updating each element local to the tile object. Since the incoming ghost data is copied into
the border elements of the data array, the extra elements on the edges of the data array, the
loops that update the elements are striaght forward. The only complication is the starting
value for the inner for loop (the x for loop). The code holds the local (0,0) element, actually
(1,1) in the data array, of each tile at a constant value of “MAX VAL.” Because of this, the
loops need to skip this element and not update it5. Therefor the for loops are setup to iterate
over all the elements in the tile array, the non-border elements of the data array, except for
the single constant element.

The calculation within the for loops is the operation that was previously discussed. The el-
ement’s current value is averaged with its four neighboring elements’ values. As each element
is updated, the code keeps track of the maximum absolute value change of the local elements
(lines 115-116). Once all of the values have been updated, the tile object contributes its local
maximum value change to the global reduction. The result of this reduction is the maxi-
mum float value passed by all the tile objects as indicated by the “CkReduction::max float”
parameter passed to the “contribute” call.

Finally, the “Tile::doCalc” function does a small amount of house keeping. Notice that
there are two pointers that “Tile::doCalc” operates on: “tileData” and “scratchData”. The
function only reads from “tileData” and it only writes to “scratchData.” At the beginning
of each timestep, the buffer pointed to by tileData contains the actually element values for
the tile. If a single buffer were used, there were be a data dependency problem. As the
for loops started updating the values of some elements (i.e. if line 114 wrote to tileData
instead of scratchData), it would change the input values used in future iterations of the
loops. Specifically lines 112-113 since they read from previous elements in the data array,
(x-1,y) and (x,y-1), which may have been written to by earlier iterations of the for loops. To
avoid this data dependency, a second data buffer is used for storing the calculated values,
“scratchData.” Once the for loops have completed, the buffer pointed to by scratch data
contains all the updated element values for the tile. The “tileData” and “scratchData”

5Notice the call to “Tile::enforceConstants” at the end of Tile::doCalc(). If the for loops were to include
these constant elements, the call to Tile::enforceConstants() would overwrite the calculated value for the
elements that should remain constant. However, it is important that the for loops in Tile::doCalc() do not
include the constant element’s value changes in the maximum value change reduction, so the elements still
need to be skipped here.

78 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

104 void Tile::doCalc() {

105 register float maxDiff = ((float)(0.0));

106

107 // Perform the 5-point calc on all elements in the tile

108 for (int y = 1; y < tileHeight + 1; y++)

109 for (int x = (y == 1 ? 2 : 1); x < tileWidth + 1; x++) {

110 float origVal = tileData[XY_TO_I(x,y)];

111 float newVal = (origVal + tileData[XY_TO_I(x+1, y)] +

112 tileData[XY_TO_I(x-1, y)] + tileData[XY_TO_I(x, y+1)]

113 + tileData[XY_TO_I(x, y-1)]) * ((float)(0.2));

114 scratchData[XY_TO_I(x,y)] = newVal;

115 float diff = fabsf(origVal - newVal);

116 maxDiff = fmax(maxDiff, diff);

117 }

118

119 // Contribute to the step’s reduction

120 contribute(sizeof(float), &maxDiff,

121 CkReduction::max_float);

122

123 // Swap the data buffer pointers and enforce constants

124 register float* tmp = tileData;

125 tileData = scratchData;

126 scratchData = tmp;

127 enforceConstants();

128 }

150 void Tile::enforceConstants() {

151 if (tileData != NULL) { tileData[XY_TO_I(1,1)] = MAX_VAL; }

152 }

Figure 3.30: Calculation function and enforce constants function for the Tile class in “Tile.C”.

3.5. MULTI-DIMENSIONAL CHARE ARRAYS 79

pointers are then swapped so the “tileData” pointer will once again point to the results of
the most recently executed timestep so thos values can be used by the next timestep. The
call to “Tile::enforceConstants” enforces the constant values since these elements are skipped
by the for loops in “Tile::doCalc” and no assumptions are made about the initial contents of
the buffer “scratchData” points to when “Tile::doCalc” begins.

34 void Main::reductionCallback(float maxStepDiff) {

35 // Display this step’s maximum difference to the user

36 static int numStepsCompleted = 0;

37 CkPrintf("Step %d: %f\n", ++numStepsCompleted, maxStepDiff);

38

39 // Check to see if the difference is small enough that the

40 // application can complete

41 if (maxStepDiff <= targetDiff) {

42 CkExit(); // Program finished

43 } else {

44 grid.startStep(); // Another step needs to be run

45 }

46 }

47

48

49 // Function to process the command-line arguments

50 void Main::processCommandLine(const CkArgMsg * const msg) {

Figure 3.31: The main chare object’s reduction callback function. This function is called
when the reduction across the entire grid completes for each step.

Figure 3.31 contains the reduction callback function use by the tile array. First the code
retrives the maximum value change from the message and displays the value to the user.
Next, the code checks the global maximum value change (i.e. the result of the reduction). If
the maximum value change seen across all the tiles is less than or equal to the error tolerance,
“targetDiff,” then the simulation is considered to have converged and the application exits.
If the maximum value change is larger than the error tolerance, the main chare initiates
another timestep by once again invoking the “Tile::startStep” entry method on all the chare
array elements (i.e. broadcasting to the chare array).

Figure 3.32 contains the output from an example run of the 2D 5-point stencil program
using four processors.

80 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

1 $./charmrun +p4 ++local ./jacobi 0.01 10 10 10 10

2 "2D Jacobi" Program on 4 processor(s)

3 Error Tolerance: 0.010000

4 Grid Size: [10 x 10] (in tiles)

5 Tile Size: [10 x 10] (in elements)

6 Step 1: 0.200000

7 Step 2: 0.080000

8 Step 3: 0.048000

9 Step 4: 0.035200

10 Step 5: 0.024000

11 Step 6: 0.021376

12 Step 7: 0.016845

13 Step 8: 0.015119

14 Step 9: 0.012902

15 Step 10: 0.011600

16 Step 11: 0.010295

17 Step 12: 0.009353

Figure 3.32: Output of the 2D 5-point stencil program run using four processors.

3.6. LOAD BALANCING 81

3.6 Load Balancing

In our next example, we will illustrate how the members of a chare array can be load bal-
anced by the Charm++runtime system. We will not cover the details of how the runtime
system does the load balancing (i.e. how it decides which chare objects should be located on
what processors, all of the ways in which it can interface with application code, and so on).
Instead, we will simply introduce the idea and show a simple example code that triggers load
balancing using the “AtSync” method. Many of the details involved with load balancing will
be discussed in later in more advanced chapters.

Figure 3.33: Control flow of the example load balancing program.

Figure 3.33 sow the control flow of this application. There are several entry method invo-
cations going on, so it may seem fairly complex at first glance, but it is actually fairly simple.
Like all Charm++programs, it begins executing with the main chare object’s constructor be-
ing invoked by the runtime system. The chare array will be created and the “startTimestep”
entry method will be called on each element. This entry method will in turn send some
data to the next (i.e. one higher index, except for the last element which will send to index
zero). Once the data is received by the previous element via the “passData” entry method,

82 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

a call to the member function “doWork” will be made. Each element in the chare array
will, at creation time, select a random number, “n,” between 1000 and 25000. The value
of “n” will indicate how much work this chare object will do each time “doWork” is called.
With each array element doing a different amount of work, it is possible that some proces-
sors will have more work than others, resulting in an overall workload imbalance across the
cores. Once the work is complete, the chare array element will make a call to “contribute.”
Once all of the array elements have contributed, the reduction will be complete and the
callback “Main::barrierCallback” will be triggered. If there are more timesteps to perform,
“Main::barrierCallback” will trigger another timestep. Otherwise, it will call “CkExit” to
end the program.

A new timestep can be triggered in one of two ways, either with or without also triggering
load balancing. Startinga timestep without also triggering load balancing is straight forward
(i.e. just broadcast to “array.startTimestep” without doing anything special). However, if
we also want have the runtime system load balance the chare objects across the physical
processors before starting the next timestep, then we must trigger load balancing. There
are multiple ways in which load balancing can occur in Charm++. There will be more about
his in later chapters. For now, we will do a simple form of load balancing that requires all
the objects involved in the load balancing to come to a synchronization point, “AtSync.”
Basically, all of the chare array elements will make a call to “AtSync” to indicate that they
are ready to be load balanced. Once all of the array elements have reached this point, the
runtime system will take over and load balance the chare array elements using the data that
it has been collecting as the program has been executing. For now, we will leave what the
runtime system does to load balance the program as a magic black box and only focus on how
to make use of it. There will be more detailed information about how the runtime system
load balancing programs, what data it collects to do so and how in later chapters.

The main chare object’s constructor, located in figure 3.34, will start with the usual
housekeeping chores (i.e. read and process command line parameters, initialize readonly
variables, initialize it’s own variables, and so on). Once that is complete, it will create a 1D
instance of the “BalanceMe” chare array class with length “numElements.”

The constructor of the “BalanceMe” chare array class, located in figure 3.35, starts by
setting member variable of its parent class called “usesAtSync.” Setting this variable to true
indicates to the runtime system that this chare array element should be load balancined
using the “AtSync” mechanism. As we have already stated, there are multiple ways for the
load balancing framework to interact with a Charm++program, and this is the method that
we will be using for this example. Next we initialize the two member variables, “n” and
“myData.” The member variable “n” will be used to indicate the amount of work and data
that this chare object will do and send, respectively. The member variable “myData” will
simply hold some data (“n” floats to be exact). The values placed in these variables is being
arbitrarily calculated since this is just an example program. However, we do want “n” to
vary somewhat because the load balancing framework keeps track of both the amount of

3.6. LOAD BALANCING 83

10 Main::Main(CkArgMsg *argsMsg) {

11

12 // Initialize variables

13 numElements = DEFAULT__NUMBER_OF_CHARE_ARRAY_ELEMENTS;

14 numIterations = DEFAULT__NUMBER_OF_ITERATIONS;

15 loadBalancingFrequency = DEFAULT__LOAD_BALANCING_FREQUENCY;

16 iteration = 0;

17 mainProxy = thisProxy;

18

19 // Process command-line arguments

20 processCommandLine(argsMsg->argc, argsMsg->argv);

21 delete argsMsg; // Done using the message

22

23 // Create the chare array (NOTE: creation starts first timestep)

24 simStartTime = CkWallTimer();

25 array = CProxy_BalanceMe::ckNew(numElements);

26 }

Figure 3.34: The constructor for the Main chare class.

84 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

73 // Create a ’random’ number that will represent the amount

74 // of work this chare will do

75 n = (int)(((float)thisIndex / (float)numElements) * 90000.0f + 10000.0f);

76

77 // Allocate and initialize data array that will hold ’data’ to send

78 myData = new float[n];

79 for (int i = 0; i < n; i++) { myData[i] = thisIndex + i; }

80

81 // Call ’nextStep’ on self to start first timestep

82 mainProxy.initCheckIn();

83 }

84

85 BalanceMe::~BalanceMe() {

86 if (myData != NULL) { delete [] myData; }

87 }

88

Figure 3.35: The constructor for the BalanceMe chare class.

work performed by each chare and the amount of data sent by each chare (and to which
other chares that data was sent). When load balancing is triggered (in this example, when
all of the chare array elements have called “AtSync”), this data is passed to a chosen load
balancing strategy (more on this later) and that strategy uses the information as it sees fit
to determine which chare objects should be migrated. For example, a random load balancing
strategy may disregard the load information and simply migrate each of the chare objects to
a random physical processor. A greedy load balancing strategy may use the load information
to first assign the chare object doing the most work, then the chare object doing the second
most work, then the third most, and so on until all of the chare objects have been assigned
to a processor. For the sake of explaining the application code, let us not concern ourselves
with which load balancing strategy is going to be use (for now).

Finally, the constructor starts the timestep for this chare by calling the “startTimestep”
entry method. Notice that this call does not take the form [proxy].[entry method]([parameters]).
Since entry methods are also member functions, a given chare object can either call an entry
method directly which will treat the call like any other function call in C++, or it can invoke
it asynchronously using the proxy object (i.e. invoke it on itself) which will case a message to
be generated and the target entry method to be executed at some point in the future (at least
after the current entry method completes since only one entry method can be active on any
given chare object at a time). In this case, we simply wish to call the “startTimestep” entry

3.6. LOAD BALANCING 85

method from within this entry method invocation, treating it as a regular C++ function call.
[DMK : TODO : May need to clean this explination up some.]

94 }

95

96 void BalanceMe::passData(int dataLen, float data[]) {

97

98 // Do ’n’ microseconds worth of work

99 // NOTE: doWork takes seconds and 1000 <= n < 100000

Figure 3.36: The BalanceMe::startTimestep entry method.

Figure 3.36 contains the source code for the “BalanceMe::startTimestep” entry method
of the “BalanceMe” chare array class. The code for this entry method is quite simple. First,
it calculates the index of the next chare array element. That is, the chare array element
with an index value that is equal to this chare array element’s index. Note that the modulus
operation is also being applied using the size of the array itself. This will cause the last array
element to calculate a “neightborIndex” of zero, causing the last array element to target the
first array element. Next, the contents of the this chare’s “myData” array are sent to the
neighboring chare object via a parameter to the “passData” invocation.

Figure 3.37 contains the source code of the “BalanceMe::passData” entry method and
the “BalanceMe::doWork” member function. The actual values of the data being passed to a
given chare array element is dismissed (this is just a toy program). Instead, the “passData”
entry method calls the “doWork” member function which will loop for “n” microseconds.
Note that the value of “n” will be calculated separately for each chare array element and will
have a value between 1000 and 25000 (i.e. “doWork” will loop for 1 to 25 milliseconds). Once
the “doWork” function has finished looping for the specified amount of time, a “contribute”
call will be made. In this case, the value being contributing is inconsequential. We are simply
using the reduction mechanism as a way of having each chare array element check in with the
main chare object. Once all of the array elements have contributed, the timestep is complete
and the specified callback function, “Main::barrierCallback,” will be triggered by the runtime
system.

Figure 3.38 contains the source code of the “Main::barrierCallback” entry method. Again,
because we are only using the reduction mechanism as a way of having each chare array
element check in at the end of a given timestep, we do not care what the result of the reduction
actually is and simply disregard it. The “barrierCallback” method then prints a message to
the user letting them know that a timestep has completed. Finally, the method decides what
to do next: end the program (if all timesteps are complete), start load balancing (if it is
time for load balancing to occur), or start a normal timestep (if there are more timesteps

86 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

101

102 // Contribute to the ’barrier’ reduction

103 CkCallback cb(CkReductionTarget(Main, barrierCallback), mainProxy);

104 contribute(sizeof(int), &workDone, CkReduction::sum_int, cb);

105 }

106

107 int BalanceMe::doWork(double lengthOfWork) {

108

109 // Loop for ’lengthOfWork’ seconds

110 int workCounter = 0;

111 double startTime = CmiWallTimer();

112 while ((CmiWallTimer() - startTime) < lengthOfWork) {

113 workCounter++;

114 }

115 return workCounter; // Returns number of iterations

116 }

117

118 void BalanceMe::startLoadBalancing() {

119 AtSync();

120 }

121

Figure 3.37: The BalanceMe::passData entry method and BalanceMe::doWork member fuc-
ntion.

3.6. LOAD BALANCING 87

49 void Main::barrierCallback() {

50 // Let the user know the iteration has completed

51 CkPrintf("Iteration %d completed\n", iteration);

52

53 // Check if this is the last iteration or not. If so, print

54 // the elapsed time exit. Otherwise, start the next timestep.

55 iteration++; // NOTE: value is the iteration about to start

56 if (iteration >= numIterations) {

57 double simStopTime = CkWallTimer();

58 CkPrintf("Completed in %lf seconds\n", simStopTime - simStartTime);

59 CkExit();

60 } else if (iteration % loadBalancingFrequency == 0) {

61 CkPrintf("Triggering Load Balancing...\n");

62 array.startLoadBalancing();

63 } else {

64 array.startTimestep();

65 }

66 }

67

68 BalanceMe::BalanceMe() {

69

70 // Set the usesAtSync variable (from base class)

71 usesAtSync = CmiTrue;

Figure 3.38: The Main::barrierCallback entry method.

88 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

to do and it’s not time to do load balancing yet). Causing the program to exit is done the
same way it was in previous programs, simply by calling “CkExit.” Starting another normal
timestep is also straight forward, invoke the ”startTimestep” entry method on each element
of the chare array by doing a broadcast to the entire array.

123 startTimestep();

124 }

125

126 void BalanceMe::pup(PUP::er &p) {

127 CBase_BalanceMe::pup(p); // PUP parent class

128 p|n; // PUP n (size of myData and work length)

129 if (p.isUnpacking()) { // If unpacking, allocate memory

Figure 3.39: The BalanceMe::startLoadBalancing entry method and Bal-
anceMe::ResumeFromSync member function.

Every so often (every “loadBalancingFrequency” timesteps), a load balancing timestep
needs to be triggered. These timesteps will begin by triggering the load balancer and then
continues with a normal timestep once load balancing has been completed. Because we
are using the “AtSync” method of triggering the load balancer, the load balancer will only
be triggered once all of the chare objects that can be load balanced have make a call to
the “AtSync” function. To accomplish this, we call “BalanceMe::startLoadBalancing” at
the beginning of the timestep, instead of “BalanceMe::startTimestep.” Figure 3.39 contains
the code for this function. When the “startLoadBalancing” entry method is called, the
chare object it was called on will indicate that it is ready to start load balancing (call to
“AtSync”) and will go idle (does not invoke other entry methods). Since only the chare array
elements are involved in load balancing in this example (recall that we set “usesAtSync”
in the “BalanceMe::BalanceMe” constructor), load balancing will start once all of the array
elements have made their respective “AtSync” calls. After the runtime system has migrated
chare objects across the various physical processors as a result of the load balancing process,
each of the chare objects that originally called “AtSync” will have their “ResumeFromSnyc”
member functions called by the runtime system. This member function is provided by the
base class and can be overloaded by application programmers if an action should be taken
by a particlar chare object once load balancing is complete. In this example, once the chare
array element has been load balanced, it will continue on by starting the next timestep (i.e.
“ResumeFromSync” invokes the entry method “startTimestep,” also shown in figure 3.39).

At this point, it is natural to ask how does the runtime system migrate chare objects from
one processor to another. Again, the details surrounding the load balancing process will be
talked about in greater detail in a later chapter. Basically, the Charm++runtime system is

3.6. LOAD BALANCING 89

using something called Pack-UnPack (PUP) routines to accomplish the object migration.
Every data structure that will be passed between chare objects is required to have a PUP
routine. The PUP routine is responsible for serializing and deserializing the values contained
in a data structure in to and out of a message object, respectively.

5 class Point {

6

7 private:

8

9 float x;

10 float y;

11 float z;

12

13 public:

14

15 Point(float xi, float yi, float zi) {

16 x = xi; y = yi; z = zi;

17 }

18

19 float getX() { return x; }

20 float getY() { return y; }

21 float getZ() { return z; }

22

23 void pup(PUP::er &p) {

24 p|x;

25 p|y;

26 p|z;

27 }

28 };

Figure 3.40: A PUP routine for the “Point” class.

Figure 3.40 contains a simple class called “Point” and its PUP routine. We first consider
PUP routines in this context to give the reader a simple example to start with. The “Point”
class represents a 3D point in space, with “x,” “y,” and “z” values. Except for the “pup”
member function, the code should be straight forward. The “pup” routine takes a single
argument (“p,” which is a “PUP::er” object passed by reference). We refer to these objects
as PUPers. There are multiple types of PUPers that are used during the migration processes:
sizers, packers, and unpackers. For each type of PUPer, the pipe operator (“—”) is performs

90 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

a different function. For sizing PUPers, the pipe operator calculates the size of the variable
on the right side of the operator and adds that value to an internal counter within the PUPer
on the left side of the operator. For packing PUPers, the pipe operator copies the value from
the variable on the right side of the operator into a pre-allocated buffer within the PUPer on
the left side of the operator. For unpacking PUPers, the pipe operator copies the next value
located within a buffer contained in the PUPer on the left side of the pipe operator into the
variable on the right side of the PUPer.

131 }

132 PUParray(p,myData, n); // PUP myData contents

133 }

134

135

136 #include "ldbDemo1.def.h"

137

Figure 3.41: The BalanceMe::pup routine.

Figure 3.41 contains the code for the PUP routine for the “BalanceMe” chare class. We
first introduced the PUP routing for the “Point” class in figure 3.40 beause the PUP routine
for the “BalanceMe” class is a bit more complex. First, the “BalanceMe” class has a base
class that also has member variables that must be serialized and deserialized as the chare
object migrates between physical processors (or, more precisely, between address spaces). As
such, the first thing that the “BalanceMe::pup” routine does is call the PUP routine for its
parent class. Second, the “BalanceMe” class contains a member variable that is a pointer to
dynamically allocated memory, called “myData.” The value of the pointer itself are of no
consequence. It mearly represents the location of data that we actually do care about within
the current address space. When the data is moved from this address space to another address
space as the result of a migration, there is no need for the value of the pointer to remain the
same. In fact, ensuring that it would be the same would be somewhat difficult. Instead, we
pay attention to the data pointed to by the pointer, an array of float values in this case with
the line “PUParray(p, mydData, n);” which PUPs the contents of the array itself. However,
before this statement, we have also include an “if” statement. This “if” statement tests
whether or not the PUP routine is being called by an unpacking PUP::er. If so, this means
that the object data is being deserialized from a buffer within a new address space. Therefore,
we must first allocate an array of floats to serve as the memory that will contain the values in
the “myData” array within the new address space. After the packing phase is completed in
the original address space, the destructor for the chare class will eventually be called, freeing
the memory pointed to by “myData” pointer in the original address space. Within the new

3.6. LOAD BALANCING 91

address space, a special constructor will be called that takes a “CkMigrateMessage” message
object. While initialization could be done in this migration constructor, we will not know
the length of the “myData” array until the member variable “n,” which contains this length,
is unpacked within the PUP routine. Regardless, every chare class is required to have this
special migration constructor, and thus we include it in this example as well as all of the
previous examples, even though we have no use for it in this program.

$./charmrun +ppn6 ./ldbDemo1 +setcpuaffinity +pemap 0-5 40 4 2

Charm++: standalone mode (not using charmrun)

Charm++: Tracemode Projections enabled.

Charm++> cpu affinity enabled.

Charm++> cpuaffinity PE-core map : 0-5

Charm++> set PE 0 on node 0 to core #0

Charm++> set PE 4 on node 0 to core #4

Charm++> set PE 5 on node 0 to core #5

Charm++> set PE 2 on node 0 to core #2

Charm++> set PE 3 on node 0 to core #3

Charm++> set PE 1 on node 0 to core #1

Charm++> Running on 1 unique compute nodes (8-way SMP).

Charm++> cpu topology info is gathered in 0.001 seconds.

[0] GreedyLB created

Iteration 0 completed

Iteration 1 completed

Triggering Load Balancing...

Iteration 2 completed

Iteration 3 completed

Completed in 1.870763 seconds

Program finished.

Figure 3.42: Output from the load balancing demo program.

Now that we have described the code for the load balancing demo program, we will discuss
what effects that load balancing has on the performance of the program. Figure 3.42 contains
the output from a single execution of the load balancing demo program using six cores. For
now, ignore the command line options “+setcpuaffinity” and “+pemap 0-5”. These options
are specific to the particular build of the Charm++ runtime system we are using (multicore-
linux64). Basically, these options just ensure that the threads being used by the runtime
system do not continuously switch between the available hardware cores, better utilizing
their memory caches. The remaining three parameters to the application, “40 4 2”, indicate
the number of “BalanceMe” chare objects in the chare array, the total number of iterations

92 CHAPTER 3. CHARES ARRAYS: INDEXED COLLECTIONS OF CHARES

that will be performed, and the number of iterations between attempts to load balance the
workload, respectively.

Figure 3.43: Screenshot of a timeline graph showing the execution of four timesteps of the
load balancing program executing on six cores.

Figure 3.43 contains a timeline screenshot of the load balancing demo program executing
on six cores. The timeline gives the reader an idea of what each of the cores are doing as
time passes throughout the execution of the program. We leave a detailed discussion of how
to use and interpret timeline graphs, along with other graphs generated using Projections, to
a later chapter. For now, we only describe the timeline in the simplest of terms. Each row in
the figure represents a hardware core. In this case, we executed the program using six cores
as indicated by the “+ppn6” command line option given to “charmrun.” Time is increasing
from left to right. For the sake of clarity and brevity, we have truncated the beginning of the
execution to remove the details of the Charm++ runtime system’s initialization (i.e. time
does not start at zero). There are many small details that may or may not be clear because
of the size of the image. However, the important thing to note for the time being is that each
of the larger blocks represents an invocation of the “BalanceMe::passData” entry method.
The width of the block represents the amount of time that the entry method took to execute.

Recall that each “BalanceMe” object will perform a different amount of work, depending
on its index in the chare array. By default, each of the objects in the chare array are assigned
to the hardware cores in a block cyclic fashion. That is, the chare objects are divided into
groups of contiguous, one group per core. Since the first elements of the chare array do
very little work (i.e. smaller values for “BalanceMe::n”) and the last elements of the chare
array do more work (i.e. larger values for “BalanceMe::n”), this creates an imbalance in the
workload assigned to each processing core. The last core will have significantly more work
than the first. This can cleary be seen within the first two timesteps in figure ??. However,

3.7. SUMMARY 93

once the first two timesteps have completed, each of the chare objects in the chare array will
call “AtSync,” causing load balancing to occur. The final two timesteps reflect the effects
that load balancing has on the performance in that they take noticably less time to complete.
Each of these timesteps takes less time and the blocks are more evenly distributed so that
no hardware core become idle waiting for another hardware core to complete its assigned
portion of the workload. Using a greedy algorithm (i.e. the algorithm embodied within the
“GreedyLB” load balancer that we specified to be used when we compiled the program) along
with the PUP routines that we have created, the runtime system automatically migrates the
chare objects to balance the workload. Now that we have given the reader a small indication
of how the Charm++ runtime system balances workloads, we will end our discussion of load
balancing for now. Later chapaters will cover load balancing in greater details, giving the
reader a better understanding of the process.

3.7 Summary

We have covered a lot of ground in this chapter, and yet we have only given the reader an
introduction on how to make user of chare arrays within Charm++ programs. We have not
covered the various options that can be specified at chare array creation time, dynamically
adding and removing elements of chare arrays at runtime, shadow arrays, and a variety of
other topics. At this point, we encourage the reader to try writing a few programs, including
the ones presented in this chapter, on their own so the reader might get a more firm grasp
on ideas presented here.

